Harmonic Measure from Two Sides (and Tools from Geometric Measure Theory)

Matthew Badger

Department of Mathematics
Stony Brook University

April 12, 2012

Simons Postdoctoral Fellows Meeting

Research Partially Supported by NSF Grants DMS-0838212 and DMS-0856687
Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

\[\exists! \text{ family of probability measures } \{\omega^X\}_{X \in \Omega} \text{ on the boundary } \partial \Omega \]

\text{called harmonic measure of } \Omega \text{ with pole at } X \in \Omega \text{ such that}

\[u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \]

is the solution of (D)
Dirichlet Problem

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

\[
\Delta u = 0 \text{ in } \Omega \\
u = f \text{ on } \partial \Omega
\]

$\Delta = \partial_{x_1}x_1 + \partial_{x_2}x_2 + \cdots + \partial_{x_n}x_n$

$\exists!$ family of probability measures $\{\omega^X\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called harmonic measure of Ω with pole at $X \in \Omega$ such that

\[
u(X) = \int_{\partial \Omega} f(Q)d\omega^X(Q) \quad \text{is the solution of (D)}
Dirichlet Problem

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain.

Dirichlet Problem

\[
\begin{aligned}
\Delta u &= 0 \text{ in } \Omega \\
\Delta &= \partial_{x_1x_1} + \partial_{x_2x_2} + \cdots + \partial_{x_nx_n} \\
\end{aligned}
\]

\[
\exists! \text{ family of probability measures } \{\omega^X\}_{X \in \Omega} \text{ on the boundary } \partial \Omega \text{ called harmonic measure of } \Omega \text{ with pole at } X \in \Omega \text{ such that}
\]

\[
u(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q) \quad \text{is the solution of (D)}
\]
Let $\Omega \subset \mathbb{R}^n$ be a domain of locally finite perimeter, with harmonic measure ω and surface measure $\sigma = \mathcal{H}^{n-1}|_{\partial \Omega}$.

If the Poisson kernel $\frac{d\omega}{d\sigma}$ is sufficiently regular, then how regular is the boundary $\partial \Omega$?
FBP 1 Results

- (Kinderlehrer and Nirenberg 1977) Let $\Omega \subset \mathbb{R}^n$ be of class C^1.

 1. $\log \frac{d\omega}{d\sigma} \in C^{1+m,\alpha}$ for $m \geq 0$, $\alpha \in (0, 1) \implies \partial \Omega$ is $C^{2+m,\alpha}$.
 2. $\log \frac{d\omega}{d\sigma} \in C^\infty \implies \partial \Omega$ is C^∞
 3. $\log \frac{d\omega}{d\sigma}$ is real analytic $\implies \partial \Omega$ is real analytic.

- (Alt and Caffarelli 1981) Assume $\Omega \subset \mathbb{R}^n$ satisfies necessary “weak conditions” (that includes C^1 as a special case). Then: $\log \frac{d\omega}{d\sigma} \in C^{0,\alpha}$ for $\alpha > 0 \implies \partial \Omega$ is $C^{1,\beta}$, $\beta = \beta(\alpha) > 0$.

- (Jerison 1987) In Alt and Caffarelli’s Theorem, $\beta = \alpha$.

- (Jerison 1987) $\log \frac{d\omega}{d\sigma} \in C^0 \implies \partial \Omega$ is VMO$_1$.

- (Kenig and Toro 2003) Studied FBP 1 with $\log \frac{d\omega}{d\sigma} \in$ VMO.
Examples of NTA Domains

Smooth Domains

Lipschitz Domains

Quasispheres (e.g. snowflake)

Question: How should we measure regularity of harmonic measure on domains which do not have surface measure?
Free Boundary Problem 2

$\Omega \subset \mathbb{R}^n$ is a 2-sided domain if:

1. $\Omega^+ = \Omega$ is open and connected
2. $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ is open and connected
3. $\partial \Omega^+ = \partial \Omega^-$

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided domain, equipped with interior harmonic measure ω^+ and exterior harmonic measure ω^-.

If the two-sided kernel $\frac{d\omega^-}{d\omega^+}$ is sufficiently regular, then how regular is the boundary $\partial \Omega$?
An Unexpected Example

\[\log \frac{d\omega^-}{d\omega^+} \text{ is smooth does not imply } \partial \Omega \text{ is smooth} \]

Figure: The zero set of the harmonic polynomial
\[h(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y) - 10xyz \]

\[\Omega^\pm = \{ h^\pm > 0 \} \text{ is a 2-sided domain, } \omega^+ = \omega^- \text{ (pole at infinity), } \log \frac{d\omega^-}{d\omega^+} \equiv 0 \text{ but } \partial \Omega^\pm = \{ h = 0 \} \text{ is not smooth at the origin.} \]
Structure Theorem for FBP 2

Theorem (B)* Assume $\Omega \subset \mathbb{R}^n$ is a 2-sided NTA domain, $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+)$ or $\log \frac{d\omega^-}{d\omega^+} \in C^0(\partial \Omega)$.

There exists $d \geq 1$ (depending on the NTA constants) such that $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

1. Every **blow-up** of $\partial \Omega$ about a point $Q \in \Gamma_k$ is the **zero set** $h^{-1}(0)$ of a homogeneous harmonic polynomial h of degree k which separates \mathbb{R}^n into two components.

2. The “flat points” Γ_1 is a dense open subset of $\partial \Omega$ with Hausdorff dimension $n - 1$.

3. The “singularities” $\Gamma_2 \cup \cdots \cup \Gamma_d$ have harmonic measure zero.
Ingredients in the Proof

1. FBP 2 was studied by Kenig and Toro (2006) who showed that blow-ups of $\partial \Omega$ are zero sets of harmonic polynomials.

 ▶ We show that only zero sets of \textit{homogeneous} harmonic polynomials appear as blow-ups.

 ▶ We show the degree of polynomials appearing in blow-ups is unique at every $Q \in \partial \Omega$. Hence $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d$.

 ▶ We study topology and size of the sets Γ_k.

2. To classify geometric blow-ups of the boundary, we study measure-theoretic blow-ups of ω^\pm (tangent measures).

3. To show Γ_1 is open, we study local flatness properties of the zero sets of harmonic polynomials.
Polynomial Harmonic Measures

$h : \mathbb{R}^n \to \mathbb{R}$ be a polynomial, $\Delta h = 0$

$\Omega^+ = \{X : h(X) > 0\}, \Omega^- = \{X : h(X) < 0\}$

(i.e. h^\pm is the Green function for Ω^\pm)

The harmonic measure ω_h associated to h is the harmonic measure of Ω^\pm with pole at infinity; i.e., for all $\varphi \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{h^{-1}(0)} \varphi d\omega_h = - \int_{\partial \Omega^\pm} \varphi \frac{\partial h^\pm}{\partial \nu} d\sigma = \int_{\Omega^\pm} h^\pm \Delta \varphi$$

Two Collections of Measures Associated to Polynomials

$P_d = \{\omega_h : h$ harmonic polynomial of degree $\leq d\}$

$F_k = \{\omega_h : h$ homogenous harmonic polynomial of degree $= k\}$
Blow-ups of the Boundary \leftrightarrow Tangent Measures of ω

Let $\Omega \subset \mathbb{R}^n$ be a 2-sided NTA domain, let $Q \in \partial \Omega$ and let $r_i \downarrow 0$.

Theorem: (KT) There is subsequence of r_i (which we relabel) and an unbounded 2-sided NTA domain Ω_∞ such that

- Blow-ups of Boundary at Q Converge:
 \[
 \partial \Omega_i = \frac{\partial \Omega - Q}{r_i} \rightarrow \partial \Omega_\infty \quad \text{in Hausdorff metric}
 \]

- Blow-ups of Harmonic Measure at Q Converge:
 \[
 \omega_{i}^\pm(E) = \frac{\omega^\pm(Q + r_i E)}{\omega^\pm(B(Q, r_i))}
 \]
 satisfy $\omega_i^\pm \rightharpoonup \omega^\pm_\infty$

where ω^\pm_∞ is the harmonic measure of Ω^\pm_∞ with pole at infinity.

Each blow-up ω^\pm_∞ is called a tangent measure of ω^\pm at Q.
Tangent Measures of ω^\pm when $\omega^+ \ll \omega^- \ll \omega^+$

Theorem (Kenig and Toro)

If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+)$, then $\text{Tan}(\omega^\pm, Q) \subset \mathcal{P}_d$.

Goal: Show $\text{Tan}(\omega^\pm, Q) \subset \mathcal{F}_k$

for some $1 \leq k = k(Q) \leq d$.

$$\mathcal{P}_d = \{ \omega_h : h \text{ harmonic polynomial of degree } \leq d \}$$

$$\mathcal{F}_k = \{ \omega_h : h \text{ homogenous harmonic of degree } = k \}$$
Tangent Measures of ω^\pm when $\omega^+ \ll \omega^- \ll \omega^+$

Theorem (Kenig and Toro)

If $\omega^+ \ll \omega^- \ll \omega^+$ and $\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+)$, then $\text{Tan}(\omega^\pm, Q) \subset P_d$.

Goal: Show $\text{Tan}(\omega^\pm, Q) \subset F_k$

for some $1 \leq k = k(Q) \leq d$.

$P_d = \{\omega_h : h \text{ harmonic polynomial of degree } \leq d\}$

$F_k = \{\omega_h : h \text{ homogenous harmonic of degree } = k\}$
Cones of Measures

A collection \mathcal{M} of non-zero Radon measures is a d-cone if it is preserved under scaling and dilation of \mathbb{R}^n:

1. If $\nu \in \mathcal{M}$ and $c > 0$, then $c\nu \in \mathcal{M}$.
2. If $\nu \in \mathcal{M}$ and $r > 0$, then $T_{0,r}\nu \in \mathcal{M}$. [$T_{0,r}(y) = y/r$]

Examples

- Tangent Measures: $\text{Tan}(\mu, x)$
- Polynomial Harmonic Measures: \mathcal{P}_d and \mathcal{F}_k

Size of a Measure and Distance to a Cone

- Let ψ be Radon measure on \mathbb{R}^n. The “size” of ψ on $B(0, r)$ is $F_r(\psi) = \int_0^r \psi(B(0, s)) ds$.

- Let ψ be a Radon measure on \mathbb{R}^n and \mathcal{M} a d-cone. There is a “distance” $d_r(\psi, \mathcal{M})$ from ψ to \mathcal{M} on $B(0, r)$ compatible with weak convergence of measures.
Connectedness of Tangent Measures

Let \mathcal{F} and \mathcal{M} be d-cones such that $\mathcal{F} \subset \mathcal{M}$. Assume that:

- \mathcal{F} and \mathcal{M} have compact bases ($\{\psi : F_1(\psi) = 1\}$),
- (Property P) There exists $\epsilon_0 > 0$ such that whenever $\mu \in \mathcal{M}$ and $d_r(\mu, \mathcal{F}) < \epsilon_0$ for all $r \geq r_0$ then $\mu \in \mathcal{F}$.

Theorem

If $\text{Tan}(\nu, x) \subset \mathcal{M}$ and $\text{Tan}(\nu, x) \cap \mathcal{F} \neq \emptyset$, then $\text{Tan}(\nu, x) \subset \mathcal{F}$.

Key Point: (Under technical hypotheses) If one tangent measure at a point belongs to \mathcal{F} then all tangent measures belong to \mathcal{F}.

First proved in [P], the theorem was stated in this form in [KPT].

- Preiss used the theorem to show Radon measures in \mathbb{R}^n with positive and finite m-density almost everywhere are m-rectifiable.
- Kenig, Preiss and Toro used the theorem to compute Hausdorff dimension of harmonic measure when $\omega^+ \ll \omega^- \ll \omega^+$.
Checking the Hypotheses: Rate of Doubling

- If \(\omega \in \mathcal{F}_k \), then \(\omega(B(0, r)) = cr^{n+k-2} \) where \(c \) depends on \(n \), \(k \) and \(\|h\|_{L^1(S^{n-1})} \). Thus \(\mathcal{F}_k \) is uniformly doubling: if \(\omega \in \mathcal{F}_k \) then
 \[
 \frac{\omega(B(0, 2r))}{\omega(B(0, r))} = 2^{n+k-2} \quad \text{for all } r > 0
 \]
 independent of the associated polynomial \(h \).

Lemma: \(\mathcal{F}_k \) has compact basis for all \(k \geq 1 \).

- If \(\omega \in \mathcal{P}_d \) is associated to a polynomial of degree \(j \leq d \) (not necessarily homogeneous), then for all \(\tau > 1 \)
 \[
 \frac{\omega(B(0, \tau r))}{\omega(B(0, r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.
 \]

Theorem: The comparison constant depends only on \(n \) and \(j! \)

Corollary: If \(d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d) \ \forall \ r \geq r_0(\omega) \), then \(k = j \).
Checking the Hypotheses: Rate of Doubling

- If $\omega \in \mathcal{F}_k$, then $\omega(B(0, r)) = cr^{n+k-2}$ where c depends on n, k and $\|h\|_{L^1(S^{n-1})}$. Thus \mathcal{F}_k is uniformly doubling: if $\omega \in \mathcal{F}_k$ then
 $$\frac{\omega(B(0, 2r))}{\omega(B(0, r))} = 2^{n+k-2} \quad \text{for all } r > 0$$
 independent of the associated polynomial h.

 Lemma: \mathcal{F}_k has compact basis for all $k \geq 1$.

- If $\omega \in \mathcal{P}_d$ is associated to a polynomial of degree $j \leq d$ (not necessarily homogeneous), then for all $\tau > 1$
 $$\frac{\omega(B(0, \tau r))}{\omega(B(0, r))} \sim \tau^{n+j-2} \quad \text{as } r \to \infty.$$

 Theorem: The comparison constant depends only on n and j!

 Corollary: If $d_r(\omega, \mathcal{F}_k) < \varepsilon_0(n, d) \forall r \geq r_0(\omega)$, then $k = j$.
Polynomial Blow-ups are Homogeneous

Theorem (B)

Let \(\Omega \) be a 2-sided NTA domain. If \(\text{Tan}(\omega^+, Q) \subset \mathcal{P}_d \), then \(\text{Tan}(\omega^\pm, Q) \subset \mathcal{F}_k \) for some \(1 \leq k \leq d \).

Steps in the Proof

1. Since \(\text{Tan}(\omega^+, Q) \subset \mathcal{P}_d \), there is a smallest degree \(k \leq d \) such that \(\text{Tan}(\omega^+, Q) \cap \mathcal{P}_k \neq \emptyset \). Show that \(\text{Tan}(\omega^+, Q) \cap \mathcal{P}_k \subset \mathcal{F}_k \).

2. Let \(\mathcal{F} = \mathcal{F}_k \) and \(\mathcal{M} = \text{Tan}(\omega^+, Q) \cup \mathcal{F}_k \). By the previous slide the hypotheses of the connectedness theorem are satisfied. Therefore, \(\text{Tan}(\omega^+, Q) \subset \mathcal{F}_k \).
Open Questions

\[
\log \frac{d\omega^-}{d\omega^+} \in VMO(d\omega^+) \Rightarrow \partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_d.
\]

1. Find an upper bound on dimension of the “singularities” \(\Gamma_2 \cup \cdots \cup \Gamma_d \). (Conjecture: \(\dim_H \leq n - 3 \))

2. (Higher Regularity) For example, if \(\log \frac{d\omega^-}{d\omega^+} \in C^{0,\alpha} \), then at \(Q \in \Gamma_k \) is \(\partial \Omega \) locally the \(C^{1,\alpha} \) image of the zero set of a harmonic polynomial of degree \(k \)?

3. (Rectifiability) Does \(\Gamma_1 = G \cup N \) where \(G \) is \((n - 1) \)-rectifiable and \(\omega^\pm(N) = 0 \)?
 ▶ The answer is yes if one assumes that \(\partial \Omega \) has locally finite perimeter (Kenig-Preiss-Toro, B).

4. Find other applications of the connectedness of tangent measures.
REFERENCES

M. Badger, *Flat points in zero sets of harmonic polynomials and harmonic measure from two sides*, preprint. arXiv:1109.1427
APPENDIX
Distance from Measure to a Cone

Let \(L(r) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f \geq 0, \text{Lip} f \leq 1, \text{spt} f \subset B(0, r) \} \).

If \(\mu \) and \(\nu \) are two Radon measures in \(\mathbb{R}^n \) and \(r > 0 \), we set

\[
F_r(\mu, \nu) = \sup \left\{ \left| \int f d\mu - \int f d\nu \right| : f \in L(r) \right\}.
\]

When \(\nu = 0 \),

\[
F_r(\mu, 0) = \int_0^r \mu(B(0, s)) ds =: F_r(\mu).
\]

Note that \(\mu_i \rightharpoonup \mu \) if and only if \(\lim_{i \to \infty} F_r(\mu_i, \mu) = 0 \) for all \(r > 0 \).

If \(\psi \) is a Radon measure and \(\mathcal{M} \) is a d-cone, we define a scaled version of \(F_r \) as follows:

\[
d_r(\psi, \mathcal{M}) = \inf \left\{ F_r \left(\frac{\psi}{F_r(\psi)}, \mu \right) : \mu \in \mathcal{M} \text{ and } F_r(\mu) = 1 \right\},
\]

i.e., normalize \(\psi \) so \(F_r(\psi) = 1 \) \& then take distance to \(\mathcal{M} \) on \(B_r \).
Homogeneous Harmonic Polynomials – “Big Piece” Lemma

Let $h : \mathbb{R}^n \to \mathbb{R}$ be homogenous harmonic polynomial of degree k.

Key Lemma (B): There is a constant $\ell_{n,k} > 0$ with the following property. For all $t \in (0, 1)$,

$$
\mathcal{H}^{n-1}\{\theta \in S^{n-1} : |h(\theta)| \geq t\|h\|_{L^\infty(S^{n-1})}\} \geq \ell_{n,k}(1 - t)^{n-1}.
$$

Interpretation: If h is homogeneous harmonic polynomial, then h takes big values on a big piece of the unit sphere.
Bounds for $\omega(B(0, r))$ as $r \to \infty$

Given $h : \mathbb{R}^n \to \mathbb{R}$ harmonic polynomial of degree d, $h(0) = 0$,

$$h = h_d + h_{d-1} + \cdots + h_1$$

where h_k is homogeneous harmonic polynomial of degree k. In polar coordinates,

$$h(r\theta) = r^d h_d(\theta) + r^{d-1} h_{d-1}(\theta) + \cdots + rh_1(\theta),$$

$$\frac{dh}{dr}(r\theta) = dr^{d-1} h_d(\theta) + (d-1)r^{d-2} h_{d-1}(\theta) + \cdots + h_1(\theta).$$

Fact: Recall $\Omega^+ = \{X : h(X) > 0\}$. For all $r > 0$,

$$\omega(B(0, r)) = \int_{\partial B(0, r) \cap \Omega^+} \frac{dh^+}{dr} d\sigma$$

The $r^{d-1} h_d(\theta)$ term dominates as $r \to \infty$. Upper bounds for $\omega(B_r)$ are easy. Use “Big Piece” Lemma for lower bounds.