COMPLEX ANALYSIS PRELIM

JANUARY 2024

Instructions, conventions and notation.

- Four fully justified and completely solved problems guarantee a Ph.D. pass.
- Clearly state which theorems you are using and verify their assumptions.
- Denote by \mathbb{C} the complex plane, by $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk, and by $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ the upper half plane.
- A *region* means a nonempty connected open set.
- The terminology *analytic* function and *holomorphic* function are used interchangeably.
- Entire functions are holomorphic in \mathbb{C} .

Problem 1. Find $\int_{0}^{\infty} \frac{dx}{1+x^3}$ and justify your answer.

Problem 2. Find all holomorphic functions satisfying $|f(z)| \leq \sqrt{|z|}$ for all $z \in \mathbb{C}$ and justify your answer.

Problem 3. Describe a holomorphic isomorphism between \mathbb{H} and the region $S = \{z = x + iy \in \mathbb{C} : -x < y < x, |z| < 2\}.$

Problem 4. Let $\mathcal{F} := \{f : \mathbb{H} \to \mathbb{D}, f \text{ is holomorphic in } \mathbb{H}\}.$

- (a) Find $\sup_{f \in \mathcal{F}} |f'(i)|$.
- (b) Is this supremum achieved? If yes, find all functions that achieve this supremum and justify your answer. If this supremum is not achieved, provide a proof of this assertion.

Problem 5. Let A be the ring $A := \{z \in \mathbb{C} : 1 < |z| < 2\}$. How many zeros of the function $f(z) = z^5 + 5z^2 + e^z$ belong to A? Justify your answer.

Problem 6. Let A be the same ring as in Problem 5, and let B be the punctured unit disc $B := \{z \in \mathbb{C} : 0 < |z| < 1\}$. Prove that

- (a) there is a holomorphic map from \mathbb{D} onto A;
- (b) there is a holomorphic map from \mathbb{D} onto B;
- (c) A and B are not holomorphically equivalent.

Problem 7. Let $u : \overline{\mathbb{D}} \to \mathbb{R}$ be a function continuous in the closed unit disc $\overline{\mathbb{D}}$. If u is harmonic in \mathbb{D} and v is its harmonic conjugate in \mathbb{D} , prove that v has a continuous extension to $\overline{\mathbb{D}}$.