Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. ($\mathbf{1 0} \mathbf{~ p t s}$) Let $U(n)=(\mathbf{Z} / n \mathbf{Z})^{\times}$be the multiplicative group of units modulo n.
(a) (6 pts) For relatively prime $m \geq 2$ and $n \geq 2$, show $U(m n)$ and $U(m) \times U(n)$ are isomorphic groups by by writing down a map and proving it is an isomorphism.
(b) ($4 \mathbf{~ p t s}$) Use the prime factorization $2024=8 \cdot 11 \cdot 23$ to compute the order of 3 in $U(2024)$. Part (a) might be helpful.
2. ($\mathbf{1 0} \mathbf{~ p t s}$)

We want to define an action of the $\operatorname{group} \mathrm{GL}_{2}(\mathbf{R})$ on the set $\mathbf{C}-\mathbf{R}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d},
$$

where $z \in \mathbf{C}-\mathbf{R}$. For example, $\left(\begin{array}{cc}2 & 3 \\ 0 & 1\end{array}\right) z=2 z+3$ and $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) z=\frac{1}{z}$.
(a) ($\mathbf{5} \mathbf{~ p t s}$) Prove the above formula defines an action of $\mathrm{GL}_{2}(\mathbf{R})$ on $\mathbf{C}-\mathbf{R}$. (This includes checking its values are in $\mathbf{C}-\mathbf{R}$.)
(b) ($\mathbf{3} \mathbf{~ p t s}$) Prove the stabilizer of i for this action is $\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a, b \in \mathbf{R}\right.$ and $\left.(a, b) \neq(0,0)\right\}$.
(c) $(2 \mathrm{pts})$ Prove this group action has a single orbit.
3. ($\mathbf{1 0} \mathrm{pts}$)
(a) ($\mathbf{3} \mathbf{~ p t s}$) Define what it means for a nonzero element of an integral domain to be irreducible.
(b) ($\mathbf{7} \mathbf{p t s}$) Prove the reduction $\bmod p$ test in $\mathbf{Z}[x]$: if $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is monic and nonconstant and there is a prime p such that $f(x) \bmod p$ is irreducible in $(\mathbf{Z} / p \mathbf{Z})[x]$, then $f(x)$ is irreducible in $\mathbf{Z}[x]$.
4. ($\mathbf{1 0} \mathbf{~ p t s}$)
(a) (5 pts) Prove $\mathbf{Z}[i]$ is Euclidean with respect to the norm on $\mathbf{Z}[i]$: if α and β are in $\mathbf{Z}[i]$ and $\beta \neq 0$, then there are γ and ρ in $\mathbf{Z}[i]$ such that (i) $\alpha=\beta \gamma+\rho$ and (ii) $\mathrm{N}(\rho)<\mathrm{N}(\beta)$.
(b) ($\mathbf{5} \mathbf{~ p t s}$) Prove each ideal in a Euclidean domain is principal. (This does not use (a).)
5. (10 pts) Let V be a real vector space with an inner product $\langle\cdot, \cdot\rangle$ and finite dimension $n \geq 1$.
(a) (4 pts) Show every (nonempty) orthogonal set of nonzero vectors in V is a linearly independent set in V.
(b) (3 pts) When $w \neq 0$ in V, show $V=\mathbf{R} w \oplus U$ where $U=\{v \in V:\langle v, w\rangle=0\}$.
(c) ($\mathbf{3} \mathbf{~ p t s}$) Use (b) to prove every nonzero finite-dimensional inner product space has an orthogonal basis. Part (a) might be helpful here too.
6. ($\mathbf{1 0} \mathbf{~ p t s}$) Give examples as requested, with justification.
(a) (2.5 pts$) \mathrm{A}$ permutation $\sigma \in S_{7}$ such that $\sigma(123)(4567) \sigma^{-1}=(354)(1762)$.
(b) (2.5 pts$)$ An odd prime number p such that the ideal (p) in $\mathbf{Z}[i]$ is not a prime ideal.
(c) $(2.5 \mathrm{pts})$ A UFD that is not a PID.
(d) ($\mathbf{2 . 5} \mathbf{~ p t s})$ For $V=\mathbf{R}^{2}$, a linear map $L: V \rightarrow V$ that is self-adjoint with respect to the usual inner product on V and is not multiplication by a scalar.

