Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) The prime factorization of 2023 is $7 \cdot 17^2$.
 - (a) (5 pts) For each prime p, prove all groups of order p^2 are abelian.
 - (b) (5 pts) Prove every group of order 2023 is isomorphic to a direct product $H \times K$, where |H| = 7 and $|K| = 17^2$. (That shows, by (a), that all groups of order 2023 are abelian. You can't assume in (b) that the group is abelian.)
- 2. (10 pts) Prove that if G is a finite group whose only automorphism is the identity map, then G is trivial or of order 2.
- 3. (**10 pts**)
 - (a) (3 pts) State Zorn's lemma.
 - (b) (7 pts) Use Zorn's lemma to prove every nonzero commutative ring contains a maximal ideal.
- 4. (10 pts) Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be vectors in \mathbf{Q}^n , where $1 \leq m \leq n$, and let $V \subseteq \mathbf{Q}^n$ be their span over \mathbf{Q} . Let $V_{\mathbf{R}}$ be their span over \mathbf{R} in \mathbf{R}^n . Prove that $V_{\mathbf{R}} \cap \mathbf{Q}^n = V$.
- 5. (10 pts) Let V be an n-dimensional real vector space, where $n \geq 1$, with basis e_1, \ldots, e_n . Let $\langle \cdot, \cdot \rangle$ be an inner product on V and D be the $n \times n$ matrix with (i, j)-entry $D_{ij} = \langle e_i, e_j \rangle$.
 - (a) (2 pts) For v and w in V, prove

$$\langle v, w \rangle = [v]^{\top} D[w],$$

where [v] and [w] are the representations of v and w as column vectors in the basis e_1, \ldots, e_n .

- (b) (4 pts) Prove that D is symmetric and use the spectral theorem to show det(D) > 0. In particular D is invertible.
- (c) (4 pts) Assuming e_1, \ldots, e_n is orthonormal for $\langle \cdot, \cdot \rangle$, show a linear map $L: V \to V$ is self-adjoint for $\langle \cdot, \cdot \rangle$ if and only if the matrix [L] is symmetric, where [L] is the matrix of L with respect to e_1, \ldots, e_n . Remark: You do not need (b) to solve (c).
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) An infinite abelian group in which every element has finite order.
 - (b) (2.5 pts) An irreducible polynomial of degree 3 in $\mathbf{F}_2[x]$.
 - (c) (2.5 pts) A ring R and ideals I and J in R such that $IJ \neq I \cap J$.
 - (d) (2.5 pts) A basis of the vector space of 2×2 real matrices with trace 0.