Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) Let R be a PID. Prove the Chinese remainder theorem in R: if a and b in R are relatively prime, $R/(ab) \cong R/(a) \times R/(b)$ as rings.
- 2. (10 pts) Let A be a commutative ring. An element a in A is called *nilpotent* when $a^n = 0$ for some $n \ge 1$. The exponent n may depend on a.
 - (a) (6 pts) Prove the set of all nilpotent elements of A is an ideal in A.
 - (b) (4 pts) If an integer $m \geq 2$ has distinct prime factors p_1, \ldots, p_r , show the nilpotent elements of $\mathbf{Z}/m\mathbf{Z}$ form the principal ideal $(p_1p_2\cdots p_r \mod m)$.
- 3. (10 pts) Let $n \ge 3$ and let r and s be the standard generators of the dihedral group of order 2n: r has order n, s has order n, and n has order n, n has order n.
 - (a) (5 pts) For an automorphism f of this dihedral group $\langle r, s \rangle$, show $f(r) = r^a$ for some integer a where (a, n) = 1 and $f(s) = r^b s$ for some integer b.
 - (b) (5 pts) Conversely, given integers a and b such that (a, n) = 1, show there is a unique automorphism f of $\langle r, s \rangle$ such that $f(r) = r^a$ and $f(s) = r^b s$.
- 4. (10 pts) Prove Cauchy's theorem: if a finite group G has order divisible by a prime p, then there is an element of G with order p. (In your solution, you may use the class equation or orbit-stabilizer formula without proof, but you may not use the Sylow theorems.)
- 5. (10 pts) Let V be an finite-dimensional real vector space with an inner product $\langle \cdot, \cdot \rangle$.
 - (a) (4 pts) Prove each element φ in the dual space V^* has the form $\varphi(v) = \langle v, w \rangle$ for a unique w in V, where w depends on φ .
 - (b) (6 pts) For each linear map $A: V \to V$ and $w \in V$, the function $v \mapsto \langle A(v), w \rangle$ is in V^* , so by (a) there is one $u \in V$, depending on A and w, such that $\langle A(v), w \rangle = \langle v, u \rangle$ for all $v \in V$. Write u as $A^*(w)$. That defines the adjoint map $A^*: V \to V$, so $\langle A(v), w \rangle = \langle v, A^*(w) \rangle$ for all $v, w \in V$. Prove A^* is linear.
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) Generators of a 3-Sylow subgroup of the symmetric group S_6 .
 - (b) (2.5 pts) An irreducible polynomial in the polynomial ring $\mathbf{Z}[x]$ that fails the reduction mod p test when p = 2 (its reduction mod 2 is not irreducible mod 2).
 - (c) (2.5 pts) A unit in $\mathbb{Z}[\sqrt{6}]$ besides ± 1 .
 - (d) (2.5 pts) A nonzero matrix in $M_2(\mathbf{R})$ that is orthogonal to $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with respect to the inner product $\langle A, B \rangle = \text{Tr}(AB^{\top})$ on $M_2(\mathbf{R})$. (You don't have to check $\langle \cdot, \cdot \rangle$ is an inner product. Note the transpose on B in the inner product.)