Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (**10 pts**)

- (a) (4 pts) Show there is exactly one nontrivial semidirect product $\mathbf{Z}/(4) \times \mathbf{Z}/(4)$ and write down the resulting group law on (a,b)(c,d) in this semidirect product.
- (b) (6 pts) Let $G = \mathbf{Z}/(4) \times \mathbf{Z}/(4)$ and $H = \mathbf{Z}/(4) \times \mathbf{Z}/(4)$, where the nontrivial semidirect product H comes from (a). In both G and H, show $(x,y)^4 = (0,0)$ for all (x,y), so all elements of G and H have order dividing 4. Then determine all elements of order 2 in each group and explain why that implies G and H have the same number of elements of each order. (This is interesting since $G \ncong H$, as one group is abelian and one is not.)
- 2. (10 pts) Let R be a commutative ring (with identity).
 - (a) (2 pts) Define the notion of an ideal in R.
 - (b) (5 pts) For each $a \in R$, show $(a) := \{ra : r \in R\}$ is an ideal in R and each ideal in R containing a contains (a).
 - (c) (3 pts) Show that if $R \neq 0$ and the only ideals in R are (0) and R then R is a field.
- 3. (10 pts) Let R be a commutative ring (with identity), $R \neq 0$, and N be the set of non-units in R. Assume that for all $u, v \in R$ such that u + v = 1, at least one of u or v is in R^{\times} .
 - (a) (6 pts) Show that N is an ideal in R and $N \neq R$.
 - (b) (4 pts) Show every proper ideal in R is contained in N and explain why N is the only maximal ideal in R.
- 4. (10 pts) For all $n \times n$ real matrices A and B, where $n \ge 1$, define $\langle A, B \rangle = \text{Tr}(AB^{\top})$.
 - (a) (4 **pts**) Use properties of matrix transposes and the trace on matrices to show $\langle \cdot, \cdot \rangle$ is an inner product on $M_n(\mathbf{R})$.
 - (b) (3 pts) Let $E_{ij} \in M_n(\mathbf{R})$ have (i, j)-entry 1 and its other entries all equal 0. Their multiplicative relations are $E_{ij}E_{jl} = E_{il}$ and $E_{ij}E_{kl} = O$ if $j \neq k$ (no need to prove this). Show the matrices E_{ij} for all i, j are an orthonormal basis of $M_n(\mathbf{R})$ with respect to $\langle \cdot, \cdot \rangle$.
 - (c) (3 pts) Prove that symmetric and skew-symmetric matrices in $M_n(\mathbf{R})$ are orthogonal for this inner product: if $A^{\top} = A$ and $B^{\top} = -B$, then $\langle A, B \rangle = 0$. (This doesn't need (b).)
- 5. (10 pts) Let V be an n-dimensional F-vector space $(n \in \mathbf{Z}^+)$ with dual space V^* .
 - (a) (2 pts) For a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, define the dual basis $\mathcal{B}^* = \{v_1^*, \dots, v_n^*\}$ in V^* .
 - (b) (5 **pts**) Prove that $\mathcal{B}^* = \{v_1^*, \dots, v_n^*\}$ from (a) is a basis of V^* .
 - (c) (3 pts) Let $V = \{a+bx+cx^2 : a,b,c \in F\}$ be the F-vector space of polynomials of degree at most 2 (and the zero polynomial), and let $\mathcal{B} = \{v_1,v_2,v_3\}$ where $v_1 = 1$, $v_2 = x 1$, and $v_3 = (x-1)^2$. Write $x^2 + 1$ as a linear combination of \mathcal{B} and compute $v_2^*(x^2 + 1)$.
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) For prime p, give a list of all abelian groups of order p^4 up to isomorphism.
 - (b) (2.5 pts) Two permutations in some S_n that have the same order and are not conjugate.
 - (c) (2.5 pts) An irreducible cubic polynomial in $\mathbf{Z}[x]$ that is not an Eisenstein polynomial.
 - (d) (2.5 pts) A nonprincipal ideal in $\mathbb{Z}[x]$.