Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (**10 pts**)

- (a) (7 pts) For $n \geq 3$, determine with proof the conjugacy classes of the dihedral group of order 2n. (Hint: Separately consider even n and odd n.)
- (b) (3 pts) Let C_n be the number of conjugacy classes in the dihedral group of order 2n. Compute $\lim_{n\to\infty}\frac{C_n}{n}$.
- 2. (10 pts) Let p the *smallest* prime dividing the order of a finite group G. Prove that if H is a subgroup of G with index p then H is a normal subgroup. (Hint: Look at the left multiplication action of G on the left cosets of H.)
- 3. (10 pts) View **Q** and **Z** as additive groups. For $a \in \mathbf{Z}$, set $\varphi_a : \mathbf{Q} \to \mathbf{Q}$ by $\varphi_a(t) = 2^a t$.
 - (a) (4 pts) Show that φ_a is an automorphism of (the additive group) \mathbf{Q} for each $a \in \mathbf{Z}$ and show $\varphi \colon \mathbf{Z} \to \operatorname{Aut}(\mathbf{Q})$ given by $a \mapsto \varphi_a$ is a homomorphism of groups.
 - (b) (4 pts) Set $G = \mathbf{Q} \rtimes_{\varphi} \mathbf{Z}$, a semi-direct product. In G let $H = \{(m,0) : m \in \mathbf{Z}\}$ and x = (0,1). Prove that $xHx^{-1} \subset H$.
 - (c) (2 pts) Show that x = (0,1) is not an element of the normalizer $N_G(H)$ of H in G.

4. (**10 pts**)

- (a) (4 pts) Define a Euclidean domain and prove all ideals in a Euclidean domain are principal
- (b) (4 pts) Prove F[X] is a Euclidean domain when F is a field.
- (c) (2 pts) Prove $\mathbf{Z}[X]$ is not a Euclidean domain.

5. **(10 pts)**

- (a) (2 pts) For a commutative ring R and R-module M, define what it means to say M is a cyclic R-module.
- (b) For any matrix $A \in \mathcal{M}_n(\mathbf{R})$, we can make \mathbf{R}^n into an $\mathbf{R}[t]$ -module by declaring that for any polynomial $f(t) = c_0 + c_1 t + \cdots + c_d t^d$ in $\mathbf{R}[t]$ and vector v in \mathbf{R}^n , $f(t)v = f(A)v = (c_0 I + c_1 A + \cdots + c_d A^d)v$.

Determine, with explanation, whether \mathbf{R}^n is a cyclic $\mathbf{R}[t]$ -module for each of the following choices of A. If it is a cyclic $\mathbf{R}[t]$ -module, then find an $\mathbf{R}[t]$ -generator:

i. (4 **pts**)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 on \mathbf{R}^2 ,
ii. (4 **pts**) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ on \mathbf{R}^3 .

- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A group isomorphism from $(\mathbf{Z}/7\mathbf{Z})^{\times}$ to $(\mathbf{Z}/9\mathbf{Z})^{\times}$.
 - (b) (2.5 pts) A cyclic group with 20 generators.
 - (c) (2.5 pts) A unit in $\mathbb{Z}[\sqrt{11}]$ other than ± 1 .
 - (d) (2.5 pts) A prime element of $\mathbf{Z}[i]$.