Risk Theory Prelims for Actuarial Students Monday, 20 August 2018 MONT 313, 9:00 am - 1:00 pm

Instructions:

- 1. There are five (5) questions here and you are to answer all five. Each question is worth 20 points.
- 2. Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- 3. Please write legibly. Points will be deducted for incoherent, incorrect, and/or irrelevant statements.

Question No. 1:

For any given insured from a portfolio of 100,000 policies, the claim frequency variable N follows a Poisson distribution with mean parameter λ which varies among the insured. Indeed, it has been found that λ is distributed as the sum of 5 identically and independently distributed exponential variables, each with mean 10.

Suppose the portfolio increases to 500,000 policies and in a manner such that all risk characteristics per insured stay the same. Let N^* be the claim frequency for a given insured from this new portfolio.

- (a) Give an expression for the moment generating function of N^* .
- (b) Calculate the mean of N^* .
- (c) Calculate the variance of N^* .

Question No. 2:

For a given random variable X, define the conditional tail expectation as

$$CTE_X(x_q) = E(X|X > x_q),$$

for 0 < q < 1, where x_q is the q-th quantile of the distribution of X defined as $x_q = \inf(x|F_X(x) \ge q)$. $F_x(\cdot)$ is the distribution function of X.

Show that for a normal random variable X with mean μ and variance σ^2 , the conditional tail expectation can be written as

$$CTE_X(x_q) = \mu + h\sigma^2,$$

where h can be expressed as

$$h = \frac{1}{\sigma} \frac{\phi(k)}{\Phi(k)},$$

for a constant k and where $\phi(\cdot)$ and $\Phi(\cdot)$ are the density and distribution functions of a standard normal variable, respectively. Give an expression for k.

Question No. 3:

In a collective risk model where the aggregate claim is defined by $S = X_1 + X_2 + \cdots + X_N$, you are given:

- (i) Claim frequency N has a Poisson distribution with mean 4.
- (ii) Claim amount X has the distribution p(1) = 0.5, p(2) = 0.3, and p(3) = 0.2.
- (a) Use the Panjer's recursion formula to show that

$$\Pr(S = n) = \frac{1}{n} \times \left[k_1 \Pr(S = n - 1) + k_2 \Pr(S = n - 2) + k_3 \Pr(S = n - 3) \right],$$

for constants k_1 , k_2 , and k_3 . Determine the values of these constants.

(b) Calculate $E[(S-3)_+]$.

Question No. 4:

Individual loss amount X follows a two-parameter Weibull distribution with mean 10 and variance 500. An insurance policy on X has a deductible amount of 2 and a policy limit of 100 per loss.

Assume loss amount increased due to inflation by 5% uniformly.

- (a) Show that $\tau = 1/2$ and determine the value of the parameter θ .
- (a) Calculate the expected value of claims per loss after the inflation. You may leave your answer in terms of the incomplete gamma function.
- (b) Calculate the variance of claims per loss after the inflation. You may leave your answer in terms of the incomplete gamma function.

Question No. 5:

Consider a claims random variable X such that given a risk class parameter γ , the random variable $X|\gamma$ has an exponential distribution with mean parameter $1/\gamma$. The risk class parameter γ has a gamma (α, λ) distribution with density $f(\gamma) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \gamma^{\alpha-1} e^{-\lambda \gamma}$.

- (a) Show that the unconditional distribution function of X is given by $F(x) = 1 (1 + x/\lambda)^{-\alpha}$.
- (b) Suppose, conditional on the risk class γ , that X_1 and X_2 are independent and identically distributed. Assume that they both come from the same risk class γ that induces a dependency. Show that the joint distribution function of (X_1, X_2) can be expressed as

$$F(x_1, x_2) = \Pr(X_1 \le x_1, X_2 \le x_2)$$

= $F(x_1) + F(x_2) - 1 + \left[(1 - F(x_1))^{-1/\alpha} + (1 - F(x_2))^{-1/\alpha} - 1 \right]^{-\alpha}$.

—— end of exam ——

APPENDIX

A random variable X is said to have a two-parameter Weibull distribution if its density has the form

$$f(x) = \frac{1}{x}\tau(x/\theta)^{\tau}e^{-(x/\theta)^{\tau}}, \quad \text{for } x > 0.$$

This distribution satisfies the following:

$$E[X^k] = \theta^k \Gamma(1 + k/\tau), \text{ for any } k > -\tau.$$

and

$$\mathrm{E}[(X \wedge x)^k] = \theta^k \Gamma(1 + k/\tau) \Gamma[1 + k/\tau; (x/\theta)^\tau] + x^k e^{-(x/\theta)^\tau}, \quad \text{for any } k > -\tau.$$

A discrete random variable N is said to belong to the (a, b, 0) class of distributions if it satisfies the relation

$$\Pr(N = k) = p_k = \left(a + \frac{b}{k}\right) \cdot p_{k-1}, \text{ for } k = 1, 2, \dots,$$

for some constants a and b. The initial value p_0 is determined so that $\sum_{k=0}^{\infty} p_k = 1$.