University of Connecticut Department of Mathematics Preliminary Exam - Risk Theory Section (Math 5637) Wednesday, August 26, 2009 There are 6 questions. Show your calculations and give the reasons that justify your steps, although you do not need to prove results formally. A summary of key formulae for a variety of distributions is attached to this examination. You may use any hand-held calculator. There are 3 hours for the exam. Mark your candidate number clearly on each blue book or page that you submit, but do not identify yourself in any other way. - 1. Individual loss amounts (ground up) this year follow a Weibull distribution with mean μ and standard deviation $\sqrt{11}\mu$. You expect a uniform 15% inflation for the coming year. What will be the variance next year for loss amounts that are subjected to a 100 deductible per loss, but with losses prior to the deductible limited to 1,000 per loss? Give the answer for the "per loss" variable, not the "per payment" variable. Let $\mu = 350$. - 2. Write an explicit expression for the 5th raw moment of the normal distribution $N(\mu, \sigma^2)$. - 3. Let $S(t) = X_1 + ... + X_{N(t)}$ where N(t) is Poission with frequency 15t and the X's are independently and identically distributed with the property that the conditional distribution $S(T)|N(t) = \bar{N}$ is a gamma distribution with parameter $\alpha = \bar{N}$ and mean $2\bar{N}$ for each integer \bar{N} . Define $L = \max_{t \geq 0} \left\{ (S(t) 44t)_+ \right\}$ to be the maximum aggregate loss random variable with premium accumulation rate c = 44. Express L as $L = K_1 + ... + K_M$ where M is a random counting variable and the K's are independent and identically distributed. Approximate K (by rounding) using a discrete distribution with whole integer units. Calculate the resulting approximate values for - (a) the probability $\psi(3)$ of ruin from a starting surplus of 3. - (b) the conditional tail expectation $\mathbb{E}\left[(L|L>3]\right]$ for the maximum aggregate loss random variable at probability level $1-\psi(3)$. - 4. A surplus process is defined by u(t) = u + ct S(t) where S(t) is a compound Poisson process with $\lambda = 200$ and an exponential individual loss distribution with parameter $\theta = 1$. The premium accumulation rate is c = 67. Write an exact formula (with no unknown coefficients) for the derivative $\frac{d\psi(t)}{du}$ of the probability of ruin $\psi(t)$ as a function of the initial surplus u. Make sure to identify any points where the formula changes. - 5. An event frequency variable is known to follow a Poisson distribution for each risk exposed to the event. The Poisson frequency λ varies, however, among the 600,000 risks exposed to the event. In fact, λ is distributed across the entire population of risks as a sum of twenty-five independent gamma random variables, all having the same β (or θ) parameters. The first has an α parameter of 0.2, the second 0.4, ... , the twenty-fifth an α parameter of 5. Finally, suppose that the population of risks suddenly increases to 1,000,000 but does so in a way that the aggregate event probability distribution is proportionally unchanged. What are the mean, variance, third, and fourth central moments of the event frequency for the new population of 1,000,000? - 6. An aggregate loss distribution F(x) for the aggregate loss variable X follows a gamma distribution with parameters $\alpha=5$ and $\theta=10$. What is the conditional tail expectation $CTE(\lambda)$ for aggregate losses at the probability level $\lambda=\mathbb{P}[X\leq 60]$? # Appendix A # An Inventory of Continuous Distributions # A.1 Introduction The incomplete gamma function is given by $$\Gamma(\alpha; x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t} dt, \quad \alpha > 0, \ x > 0$$ with $\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt, \quad \alpha > 0.$ Also, define $$G(\alpha; x) = \int_{x}^{\infty} t^{\alpha - 1} e^{-t} dt, \quad x > 0.$$ At times we will need this integral for nonpositive values of α . Integration by parts produces the relationship $$G(\alpha;x) = -\frac{x^{\alpha}e^{-x}}{\alpha} + \frac{1}{\alpha}G(\alpha+1;x)$$ This can be repeated until the first argument of G is $\alpha + k$, a positive number. Then it can be evaluated from $$G(\alpha + k; x) = \Gamma(\alpha + k)[1 - \Gamma(\alpha + k; x)].$$ The incomplete beta function is given by $$\beta(a,b;x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1} (1-t)^{b-1} dt, \quad a > 0, \ b > 0, \ 0 < x < 1.$$ # A.2 Transformed beta family # A.2.3 Three-parameter distributions # A.2.3.1 Generalized Pareto (beta of the second kind)— α, θ, τ $$f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)} \frac{\theta^{\alpha}x^{\tau - 1}}{(x + \theta)^{\alpha + \tau}} \qquad F(x) = \beta(\tau, \alpha; u), \quad u = \frac{x}{x + \theta}$$ $$E[X^k] = \frac{\theta^k \Gamma(\tau + k)\Gamma(\alpha - k)}{\Gamma(\alpha)\Gamma(\tau)}, \quad -\tau < k < \alpha$$ $$E[X^k] = \frac{\theta^k \tau(\tau + 1)\cdots(\tau + k - 1)}{(\alpha - 1)\cdots(\alpha - k)}, \quad \text{if } k \text{ is an integer}$$ $$E[(X \land x)^k] = \frac{\theta^k \Gamma(\tau + k)\Gamma(\alpha - k)}{\Gamma(\alpha)\Gamma(\tau)}\beta(\tau + k, \alpha - k; u) + x^k[1 - F(x)], \quad k > -\tau$$ $$\text{mode} = \theta \frac{\tau - 1}{\alpha + 1}, \quad \tau > 1, \text{ else } 0$$ # A.2.3.2 Burr (Burr Type XII, Singh-Maddala)— α, θ, γ $$f(x) = \frac{\alpha\gamma(x/\theta)^{\gamma}}{x[1+(x/\theta)^{\gamma}]^{\alpha+1}} \qquad F(x) = 1 - u^{\alpha}, \quad u = \frac{1}{1+(x/\theta)^{\gamma}}$$ $$E[X^{k}] = \frac{\theta^{k}\Gamma(1+k/\gamma)\Gamma(\alpha-k/\gamma)}{\Gamma(\alpha)}, \quad -\gamma < k < \alpha\gamma$$ $$VaR_{p}(X) = \theta[(1-p)^{-1/\alpha} - 1]^{1/\gamma}$$ $$E[(X \wedge x)^{k}] = \frac{\theta^{k}\Gamma(1+k/\gamma)\Gamma(\alpha-k/\gamma)}{\Gamma(\alpha)}\beta(1+k/\gamma, \alpha-k/\gamma; 1-u) + x^{k}u^{\alpha}, \quad k > -\gamma$$ $$mode = \theta\left(\frac{\gamma-1}{\alpha\gamma+1}\right)^{1/\gamma}, \quad \gamma > 1, \text{ else } 0$$ #### A.2.3.3 Inverse Burr (Dagum)— τ , θ , γ $$\begin{split} f(x) &= \frac{\tau \gamma(x/\theta)^{\gamma \tau}}{x[1+(x/\theta)^{\gamma}]^{\tau+1}} \qquad F(x) = u^{\tau}, \quad u = \frac{(x/\theta)^{\gamma}}{1+(x/\theta)^{\gamma}} \\ & \text{E}[X^k] &= \frac{\theta^k \Gamma(\tau+k/\gamma) \Gamma(1-k/\gamma)}{\Gamma(\tau)}, \quad -\tau \gamma < k < \gamma \\ & \text{VaR}_p(X) &= \theta(p^{-1/\tau}-1)^{-1/\gamma} \\ & \text{E}[(X \wedge x)^k] &= \frac{\theta^k \Gamma(\tau+k/\gamma) \Gamma(1-k/\gamma)}{\Gamma(\tau)} \beta(\tau+k/\gamma,1-k/\gamma;u) + x^k [1-u^{\tau}], \quad k > -\tau \gamma \\ & \text{mode} &= \theta\left(\frac{\tau \gamma - 1}{\gamma + 1}\right)^{1/\gamma}, \quad \tau \gamma > 1, \text{ else } 0 \end{split}$$ ## A.2.4 Two-parameter distributions # A.2.4.1 Pareto (Pareto Type II, Lomax)— α , θ $$f(x) = \frac{\alpha\theta^{\alpha}}{(x+\theta)^{\alpha+1}} \qquad F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$ $$E[X^k] = \frac{\theta^k \Gamma(k+1)\Gamma(\alpha-k)}{\Gamma(\alpha)}, \quad -1 < k < \alpha$$ $$E[X^k] = \frac{\theta^k k!}{(\alpha-1)\cdots(\alpha-k)}, \quad \text{if k is an integer}$$ $$VaR_p(X) = \theta[(1-p)^{-1/\alpha} - 1]$$ $$TVaR_p(X) = VaR_p(X) + \frac{\theta(1-p)^{-1/\alpha}}{\alpha-1}, \quad \alpha > 1$$ $$E[X \wedge x] = \frac{\theta}{\alpha-1} \left[1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha-1}\right], \quad \alpha \neq 1$$ $$E[X \wedge x] = -\theta \ln\left(\frac{\theta}{x+\theta}\right), \quad \alpha = 1$$ $$E[(X \wedge x)^k] = \frac{\theta^k \Gamma(k+1)\Gamma(\alpha-k)}{\Gamma(\alpha)} \beta[k+1, \alpha-k; x/(x+\theta)] + x^k \left(\frac{\theta}{x+\theta}\right)^{\alpha}, \quad \text{all k mode} = 0$$ #### A.2.4.2 Inverse Pareto— τ , θ $$f(x) = \frac{\tau \theta x^{\tau - 1}}{(x + \theta)^{\tau + 1}} \qquad F(x) = \left(\frac{x}{x + \theta}\right)^{\tau}$$ $$E[X^k] = \frac{\theta^k \Gamma(\tau + k) \Gamma(1 - k)}{\Gamma(\tau)}, \quad -\tau < k < 1$$ $$E[X^k] = \frac{\theta^k (-k)!}{(\tau - 1) \cdots (\tau + k)}, \quad \text{if k is a negative integer}$$ $$VaR_p(X) = \theta[p^{-1/\tau} - 1]^{-1}$$ $$E[(X \wedge x)^k] = \theta^k \tau \int_0^{x/(x + \theta)} y^{\tau + k - 1} (1 - y)^{-k} dy + x^k \left[1 - \left(\frac{x}{x + \theta}\right)^{\tau}\right], \quad k > -\tau$$ $$\text{mode} = \theta^{\frac{\tau}{2} - 1}, \quad \tau > 1, \text{ else } 0$$ ## A.2.4.3 Loglogistic (Fisk)— γ , θ $$\begin{split} f(x) &= \frac{\gamma(x/\theta)^{\gamma}}{x[1+(x/\theta)^{\gamma}]^2} \qquad F(x) = u, \quad u = \frac{(x/\theta)^{\gamma}}{1+(x/\theta)^{\gamma}} \\ \mathrm{E}[X^k] &= \theta^k \Gamma(1+k/\gamma) \Gamma(1-k/\gamma), \quad -\gamma < k < \gamma \\ \mathrm{VaR}_p(X) &= \theta(p^{-1}-1)^{-1/\gamma} \\ \mathrm{E}[(X \wedge x)^k] &= \theta^k \Gamma(1+k/\gamma) \Gamma(1-k/\gamma) \beta(1+k/\gamma, 1-k/\gamma; u) + x^k (1-u), \quad k > -\gamma \\ \mathrm{mode} &= \theta \left(\frac{\gamma-1}{\gamma+1}\right)^{1/\gamma}, \quad \gamma > 1, \text{ else } 0 \end{split}$$ #### A.2.4.4 Paralogistic— α , θ This is a Burr distribution with $\gamma = \alpha$. $$f(x) = \frac{\alpha^2 (x/\theta)^{\alpha}}{x[1 + (x/\theta)^{\alpha}]^{\alpha+1}} \qquad F(x) = 1 - u^{\alpha}, \quad u = \frac{1}{1 + (x/\theta)^{\alpha}}$$ $$E[X^k] = \frac{\theta^k \Gamma(1 + k/\alpha) \Gamma(\alpha - k/\alpha)}{\Gamma(\alpha)}, \quad -\alpha < k < \alpha^2$$ $$VaR_p(X) = \theta[(1 - p)^{-1/\alpha} - 1]^{1/\alpha}$$ $$E[(X \wedge x)^k] = \frac{\theta^k \Gamma(1 + k/\alpha) \Gamma(\alpha - k/\alpha)}{\Gamma(\alpha)} \beta(1 + k/\alpha, \alpha - k/\alpha; 1 - u) + x^k u^{\alpha}, \quad k > -\alpha$$ $$mode = \theta \left(\frac{\alpha - 1}{\alpha^2 + 1}\right)^{1/\alpha}, \quad \alpha > 1, \text{ else } 0$$ #### A.2.4.5 Inverse paralogistic— τ , θ This is an inverse Burr distribution with $\gamma = \tau$. $$f(x) = \frac{\tau^{2}(x/\theta)^{\tau^{2}}}{x[1 + (x/\theta)^{\tau}]^{\tau+1}} \qquad F(x) = u^{\tau}, \quad u = \frac{(x/\theta)^{\tau}}{1 + (x/\theta)^{\tau}}$$ $$E[X^{k}] = \frac{\theta^{k}\Gamma(\tau + k/\tau)\Gamma(1 - k/\tau)}{\Gamma(\tau)}, \quad -\tau^{2} < k < \tau$$ $$VaR_{p}(X) = \theta(p^{-1/\tau} - 1)^{-1/\tau}$$ $$E[(X \wedge x)^{k}] = \frac{\theta^{k}\Gamma(\tau + k/\tau)\Gamma(1 - k/\tau)}{\Gamma(\tau)}\beta(\tau + k/\tau, 1 - k/\tau; u) + x^{k}[1 - u^{\tau}], \quad k > -\tau^{2}$$ $$mode = \theta(\tau - 1)^{1/\tau}, \quad \tau > 1, \text{ else } 0$$ # A.3 Transformed gamma family #### A.3.2 Two-parameter distributions ## A.3.2.1 Gamma— α, θ $$\begin{split} f(x) &= \frac{(x/\theta)^{\alpha}e^{-x/\theta}}{x\Gamma(\alpha)} & F(x) = \Gamma(\alpha; x/\theta) \\ M(t) &= (1-\theta t)^{-\alpha}, \quad t < 1/\theta & \mathrm{E}[X^k] = \frac{\theta^k\Gamma(\alpha+k)}{\Gamma(\alpha)}, \quad k > -\alpha \\ \mathrm{E}[X^k] &= \theta^k(\alpha+k-1)\cdots\alpha, \quad \text{if k is an integer} \end{split}$$ $$\begin{split} \mathrm{E}[(X \wedge x)^k] &= \frac{\theta^k \Gamma(\alpha + k)}{\Gamma(\alpha)} \Gamma(\alpha + k; x/\theta) + x^k [1 - \Gamma(\alpha; x/\theta)], \quad k > -\alpha \\ &= \alpha(\alpha + 1) \cdots (\alpha + k - 1) \theta^k \Gamma(\alpha + k; x/\theta) + x^k [1 - \Gamma(\alpha; x/\theta)], \quad k \text{ an integer mode} \\ &= \theta(\alpha - 1), \quad \alpha > 1, \text{ else } 0 \end{split}$$ #### A.3.2.2 Inverse gamma (Vinci)— α, θ $$\begin{split} f(x) &= \frac{(\theta/x)^{\alpha}e^{-\theta/x}}{x\Gamma(\alpha)} \qquad F(x) = 1 - \Gamma(\alpha;\theta/x) \\ & \mathrm{E}[X^k] &= \frac{\theta^k\Gamma(\alpha-k)}{\Gamma(\alpha)}, \quad k < \alpha \qquad \mathrm{E}[X^k] = \frac{\theta^k}{(\alpha-1)\cdots(\alpha-k)}, \quad \text{if k is an integer} \\ & \mathrm{E}[(X \wedge x)^k] &= \frac{\theta^k\Gamma(\alpha-k)}{\Gamma(\alpha)}[1 - \Gamma(\alpha-k;\theta/x)] + x^k\Gamma(\alpha;\theta/x) \\ &= \frac{\theta^k\Gamma(\alpha-k)}{\Gamma(\alpha)}G(\alpha-k;\theta/x) + x^k\Gamma(\alpha;\theta/x), \text{ all k} \\ & \mathrm{mode} &= \theta/(\alpha+1) \end{split}$$ #### A.3.2.3 Weibull— θ , τ $$\begin{split} f(x) &= \frac{\tau(x/\theta)^{\tau}e^{-(x/\theta)^{\tau}}}{x} & F(x) = 1 - e^{-(x/\theta)^{\tau}} \\ \mathrm{E}[X^k] &= \theta^k\Gamma(1+k/\tau), \quad k > -\tau \\ \mathrm{VaR}_p(X) &= \theta[-\ln(1-p)]^{1/\tau} \\ \mathrm{E}[(X\wedge x)^k] &= \theta^k\Gamma(1+k/\tau)\Gamma[1+k/\tau;(x/\theta)^{\tau}] + x^k e^{-(x/\theta)^{\tau}}, \quad k > -\tau \\ \mathrm{mode} &= \theta\left(\frac{\tau-1}{\tau}\right)^{1/\tau}, \quad \tau > 1, \text{ else } 0 \end{split}$$ ## A.3.2.4 Inverse Weibull (log Gompertz)— θ , τ $$f(x) = \frac{\tau(\theta/x)^{\tau} e^{-(\theta/x)^{\tau}}}{x} \qquad F(x) = e^{-(\theta/x)^{\tau}}$$ $$E[X^{k}] = \theta^{k} \Gamma(1 - k/\tau), \quad k < \tau$$ $$VaR_{p}(X) = \theta(-\ln p)^{-1/\tau}$$ $$E[(X \wedge x)^{k}] = \theta^{k} \Gamma(1 - k/\tau) \{1 - \Gamma[1 - k/\tau; (\theta/x)^{\tau}]\} + x^{k} \left[1 - e^{-(\theta/x)^{\tau}}\right], \quad \text{all } k$$ $$= \theta^{k} \Gamma(1 - k/\tau) G[1 - k/\tau; (\theta/x)^{\tau}] + x^{k} \left[1 - e^{-(\theta/x)^{\tau}}\right]$$ $$\text{mode} = \theta \left(\frac{\tau}{\tau + 1}\right)^{1/\tau}$$ ## A.3.3 One-parameter distributions #### A.3.3.1 Exponential— θ $$\begin{split} f(x) &= \frac{e^{-x/\theta}}{\theta} \qquad F(x) = 1 - e^{-x/\theta} \\ M(t) &= (1 - \theta t)^{-1} \qquad \mathrm{E}[X^k] = \theta^k \Gamma(k+1), \quad k > -1 \\ \mathrm{E}[X^k] &= \theta^k k!, \quad \text{if k is an integer} \\ \mathrm{VaR}_p(X) &= -\theta \ln(1-p) \\ \mathrm{TVaR}_p(X) &= -\theta \ln(1-p) + \theta \\ \mathrm{E}[X \wedge x] &= \theta(1 - e^{-x/\theta}) \\ \mathrm{E}[(X \wedge x)^k] &= \theta^k \Gamma(k+1) \Gamma(k+1; x/\theta) + x^k e^{-x/\theta}, \quad k > -1 \\ &= \theta^k k! \Gamma(k+1; x/\theta) + x^k e^{-x/\theta}, \quad k \text{ an integer} \\ \mathrm{mode} &= 0 \end{split}$$ #### A.3.3.2 Inverse exponential— θ $$\begin{split} f(x) &= \frac{\theta e^{-\theta/x}}{x^2} & F(x) = e^{-\theta/x} \\ & \mathrm{E}[X^k] &= \theta^k \Gamma(1-k), \quad k < 1 \\ & \mathrm{VaR}_p(X) &= \theta(-\ln p)^{-1} \\ & \mathrm{E}[(X \wedge x)^k] &= \theta^k G(1-k;\theta/x) + x^k (1-e^{-\theta/x}), \quad \text{all } k \\ & \mathrm{mode} &= \theta/2 \end{split}$$ ## A.4 Other distributions ## A.4.1.1 Lognormal— μ , σ (μ can be negative) $$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}\exp(-z^2/2) = \phi(z)/(\sigma x), \quad z = \frac{\ln x - \mu}{\sigma} \qquad F(x) = \Phi(z)$$ $$E[X^k] = \exp(k\mu + k^2\sigma^2/2)$$ $$E[(X \wedge x)^k] = \exp(k\mu + k^2\sigma^2/2)\Phi\left(\frac{\ln x - \mu - k\sigma^2}{\sigma}\right) + x^k[1 - F(x)]$$ $$\text{mode} = \exp(\mu - \sigma^2)$$ #### A.4.1.2 Inverse Gaussian— μ , θ $$f(x) = \left(\frac{\theta}{2\pi x^3}\right)^{1/2} \exp\left(-\frac{\theta z^2}{2x}\right), \quad z = \frac{x-\mu}{\mu}$$ $$F(x) = \Phi\left[z\left(\frac{\theta}{x}\right)^{1/2}\right] + \exp\left(\frac{2\theta}{\mu}\right) \Phi\left[-y\left(\frac{\theta}{x}\right)^{1/2}\right], \quad y = \frac{x+\mu}{\mu}$$ $$M(t) = \exp\left[\frac{\theta}{\mu}\left(1-\sqrt{1-\frac{2t\mu^2}{\theta}}\right)\right], \quad t < \frac{\theta}{2\mu^2}, \qquad \text{E}[X] = \mu, \quad \text{Var}[X] = \mu^3/\theta$$ $$\text{E}[X \wedge x] = x - \mu z \Phi\left[z\left(\frac{\theta}{x}\right)^{1/2}\right] - \mu y \exp\left(\frac{2\theta}{\mu}\right) \Phi\left[-y\left(\frac{\theta}{x}\right)^{1/2}\right]$$ # A.4.1.3 \log -t-r, μ , σ (μ can be negative) Let Y have a t distribution with r degrees of freedom. Then $X = \exp(\sigma Y + \mu)$ has the log-t distribution. Positive moments do not exist for this distribution. Just as the t distribution has a heavier tail than the normal distribution, this distribution has a heavier tail than the lognormal distribution. $$f(x) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{x\sigma\sqrt{\pi r}\Gamma\left(\frac{r}{2}\right)\left[1+\frac{1}{r}\left(\frac{\ln x-\mu}{\sigma}\right)^2\right]^{(r+1)/2}},$$ $$F(x) = F_r\left(\frac{\ln x-\mu}{\sigma}\right) \text{ with } F_r(t) \text{ the cdf of a } t \text{ distribution with } r \text{ d.f.,}$$ $$F(x) = \begin{cases} \frac{1}{2}\beta\left[\frac{r}{2},\frac{1}{2};\frac{r}{r+\left(\frac{\ln x-\mu}{\sigma}\right)^2}\right], & 0 < x \le e^{\mu}, \\ 1-\frac{1}{2}\beta\left[\frac{r}{2},\frac{1}{2};\frac{r}{r+\left(\frac{\ln x-\mu}{\sigma}\right)^2}\right], & x \ge e^{\mu}. \end{cases}$$ #### A.4.1.4 Single-parameter Pareto— α, θ $$f(x) = \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, \quad x > \theta \qquad F(x) = 1 - (\theta/x)^{\alpha}, \quad x > \theta$$ $$\operatorname{VaR}_{p}(X) = \theta(1-p)^{-1/\alpha} \qquad \operatorname{TVaR}_{p}(X) = \frac{\alpha \theta(1-p)^{-1/\alpha}}{\alpha-1}, \quad \alpha > 1$$ $$\operatorname{E}[X^{k}] = \frac{\alpha \theta^{k}}{\alpha-k}, \quad k < \alpha \qquad \operatorname{E}[(X \wedge x)^{k}] = \frac{\alpha \theta^{k}}{\alpha-k} - \frac{k \theta^{\alpha}}{(\alpha-k)x^{\alpha-k}}, \quad x \ge \theta$$ $$\operatorname{mode} = \theta$$ *Note:* Although there appears to be two parameters, only α is a true parameter. The value of θ must be set in advance. # A.5 Distributions with finite support For these two distributions, the scale parameter θ is assumed known. #### A.5.1.1 Generalized beta— a, b, θ, τ $$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} u^a (1-u)^{b-1} \frac{\tau}{x}, \quad 0 < x < \theta, \quad u = (x/\theta)^{\tau}$$ $$F(x) = \beta(a,b;u)$$ $$E[X^k] = \frac{\theta^k \Gamma(a+b)\Gamma(a+k/\tau)}{\Gamma(a)\Gamma(a+b+k/\tau)}, \quad k > -a\tau$$ $$E[(X \wedge x)^k] = \frac{\theta^k \Gamma(a+b)\Gamma(a+k/\tau)}{\Gamma(a)\Gamma(a+b+k/\tau)} \beta(a+k/\tau,b;u) + x^k [1-\beta(a,b;u)]$$ #### A.5.1.2 beta— a, b, θ $$\begin{split} f(x) &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} u^a (1-u)^{b-1} \frac{1}{x}, \quad 0 < x < \theta, \quad u = x/\theta \\ F(x) &= \beta(a,b;u) \\ E[X^k] &= \frac{\theta^k \Gamma(a+b)\Gamma(a+k)}{\Gamma(a)\Gamma(a+b+k)}, \quad k > -a \\ E[X^k] &= \frac{\theta^k a(a+1)\cdots(a+k-1)}{(a+b)(a+b+1)\cdots(a+b+k-1)}, \quad \text{if k is an integer} \\ E[(X \wedge x)^k] &= \frac{\theta^k a(a+1)\cdots(a+k-1)}{(a+b)(a+b+1)\cdots(a+b+k-1)} \beta(a+k,b;u) \\ &+ x^k [1-\beta(a,b;u)] \end{split}$$ # Appendix A # An Inventory of Discrete Distributions # A.2 Introduction The 16 models fall into three classes. The divisions are based on the algorithm by which the probabilities are computed. For some of the more familiar distributions these formulas will look different from the ones you may have learned, but they produce the same probabilities. After each name, the parameters are given. All parameters are positive unless otherwise indicated. In all cases, p_k is the probability of observing k losses. For finding moments, the most convenient form is to give the factorial moments. The jth factorial moment is $\mu_{(j)} = \mathbb{E}[N(N-1)\cdots(N-j+1)]$. We have $\mathbb{E}[N] = \mu_{(1)}$ and $\text{Var}(N) = \mu_{(2)} + \mu_{(1)} - \mu_{(1)}^2$. The estimators which are presented are not intended to be useful estimators but rather for providing starting values for maximizing the likelihood (or other) function. For determining starting values, the following quantities are used [where n_k is the observed frequency at k (if, for the last entry, n_k represents the number of observations at k or more, assume it was at exactly k) and n is the sample size]: $$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{\infty} k n_k, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{\infty} k^2 n_k - \hat{\mu}^2.$$ When the method of moments is used to determine the starting value, a circumflex (e.g., $\hat{\lambda}$) is used. For any other method, a tilde (e.g., $\tilde{\lambda}$) is used. When the starting value formulas do not provide admissible parameter values, a truly crude guess is to set the product of all λ and β parameters equal to the sample mean and set all other parameters equal to 1. If there are two λ and/or β parameters, an easy choice is to set each to the square root of the sample mean. The last item presented is the probability generating function, $$P(z) = \mathbf{E}[z^N].$$ # A.3 The (a, b, 0) class # A.4 The (a, b, 0) class #### A.4.1.1 Poisson— λ $$p_0 = e^{-\lambda}, \quad a = 0, \quad b = \lambda$$ $p_k = \frac{e^{-\lambda} \lambda^k}{k!}$ $E[N] = \lambda, \quad Var[N] = \lambda$ $P(z) = e^{\lambda(z-1)}$ #### A.4.1.2 Geometric— β $$p_0 = \frac{1}{1+\beta}, \quad a = \frac{\beta}{1+\beta}, \quad b = 0$$ $p_k = \frac{\beta^k}{(1+\beta)^{k+1}}$ $E[N] = \beta, \quad Var[N] = \beta(1+\beta)$ $P(z) = [1-\beta(z-1)]^{-1}$ This is a special case of the negative binomial with r = 1. #### A.4.1.3 Binomial—q, m, (0 < q < 1, m an integer) $$p_0 = (1-q)^m, \quad a = -\frac{q}{1-q}, \quad b = \frac{(m+1)q}{1-q}$$ $$p_k = {m \choose k} q^k (1-q)^{m-k}, \quad k = 0, 1, \dots, m$$ $$E[N] = mq, \quad Var[N] = mq(1-q) \qquad P(z) = [1+q(z-1)]^m.$$ # A.4.1.4 Negative binomial— β , r $$p_{0} = (1+\beta)^{-r}, \quad a = \frac{\beta}{1+\beta}, \quad b = \frac{(r-1)\beta}{1+\beta}$$ $$p_{k} = \frac{r(r+1)\cdots(r+k-1)\beta^{k}}{k!(1+\beta)^{r+k}}$$ $$E[N] = r\beta, \quad Var[N] = r\beta(1+\beta) \qquad P(z) = [1-\beta(z-1)]^{-r}.$$ # A.5 The (a, b, 1) class To distinguish this class from the (a, b, 0) class, the probabilities are denoted $\Pr(N = k) = p_k^M$ or $\Pr(N = k) = p_k^T$ depending on which subclass is being represented. For this class, p_0^M is arbitrary (that is, it is a parameter) and then p_1^M or p_1^T is a specified function of the parameters a and b. Subsequent probabilities are obtained recursively as in the (a, b, 0) class: $p_k^M = (a + b/k)p_{k-1}^M$, $k = 2, 3, \ldots$, with the same recursion for p_k^T There are two sub-classes of this class. When discussing their members, we often refer to the "corresponding" member of the (a, b, 0) class. This refers to the member of that class with the same values for a and b. The notation p_k will continue to be used for probabilities for the corresponding (a, b, 0) distribution. ## A.5.1 The zero-truncated subclass The members of this class have $p_0^T=0$ and therefore it need not be estimated. These distributions should only be used when a value of zero is impossible. The first factorial moment is $\mu_{(1)}=(a+b)/[(1-a)(1-p_0)]$, where p_0 is the value for the corresponding member of the (a,b,0) class. For the logarithmic distribution (which has no corresponding member), $\mu_{(1)}=\beta/\ln(1+\beta)$. Higher factorial moments are obtained recursively with the same formula as with the (a,b,0) class. The variance is $(a+b)[1-(a+b+1)p_0]/[(1-a)(1-p_0)]^2$. For those members of the subclass which have corresponding (a,b,0) distributions, $p_k^T=p_k/(1-p_0)$. ## A.5.1.1 Zero-truncated Poisson— λ $$\begin{split} p_1^T &= \frac{\lambda}{e^{\lambda} - 1}, \quad a = 0, \quad b = \lambda, \\ p_k^T &= \frac{\lambda^k}{k!(e^{\lambda} - 1)}, \\ \mathbf{E}[N] &= \lambda/(1 - e^{-\lambda}), \quad \mathrm{Var}[N] = \lambda[1 - (\lambda + 1)e^{-\lambda}]/(1 - e^{-\lambda})^2, \\ \tilde{\lambda} &= \ln(n\hat{\mu}/n_1), \\ P(z) &= \frac{e^{\lambda z} - 1}{e^{\lambda} - 1}. \end{split}$$ ## A.5.1.2 Zero-truncated geometric— β $$\begin{split} p_1^T &=& \frac{1}{1+\beta}, \quad a = \frac{\beta}{1+\beta}, \quad b = 0, \\ p_k^T &=& \frac{\beta^{k-1}}{(1+\beta)^k}, \\ \mathbf{E}[N] &=& 1+\beta, \quad \mathrm{Var}[N] = \beta(1+\beta), \\ \hat{\beta} &=& \hat{\mu} - 1, \\ P(z) &=& \frac{[1-\beta(z-1)]^{-1} - (1+\beta)^{-1}}{1-(1+\beta)^{-1}}. \end{split}$$ This is a special case of the zero-truncated negative binomial with r = 1. #### A.5.1.3 Logarithmic— β $$\begin{split} p_1^T &= \frac{\beta}{(1+\beta)\ln(1+\beta)}, \quad a = \frac{\beta}{1+\beta}, \quad b = -\frac{\beta}{1+\beta}, \\ p_k^T &= \frac{\beta^k}{k(1+\beta)^k\ln(1+\beta)}, \\ \mathbf{E}[N] &= \beta/\ln(1+\beta), \quad \mathrm{Var}[N] = \frac{\beta[1+\beta-\beta/\ln(1+\beta)]}{\ln(1+\beta)}, \\ \tilde{\beta} &= \frac{n\hat{\mu}}{n_1} - 1 \quad \text{or} \quad \frac{2(\hat{\mu}-1)}{\hat{\mu}}, \\ P(z) &= 1 - \frac{\ln[1-\beta(z-1)]}{\ln(1+\beta)}. \end{split}$$ This is a limiting case of the zero-truncated negative binomial as $r \to 0$. # A.5.1.4 Zero-truncated binomial -q, m, (0 < q < 1, m an integer) $$\begin{split} p_1^T &= \frac{m(1-q)^{m-1}q}{1-(1-q)^m}, \quad a = -\frac{q}{1-q}, \quad b = \frac{(m+1)q}{1-q}, \\ p_k^T &= \frac{\binom{m}{k}q^k(1-q)^{m-k}}{1-(1-q)^m}, \quad k = 1, 2, \dots, m, \\ \text{E}[N] &= \frac{mq}{1-(1-q)^m}, \\ \text{Var}[N] &= \frac{mq[(1-q)-(1-q+mq)(1-q)^m]}{[1-(1-q)^m]^2}, \\ \tilde{q} &= \frac{\hat{\mu}}{m}, \\ P(z) &= \frac{[1+q(z-1)]^m-(1-q)^m}{1-(1-q)^m}. \end{split}$$ # A.5.1.5 Zero-truncated negative binomial— β , r, $(r > -1, r \neq 0)$ $$\begin{split} p_1^T &= \frac{r\beta}{(1+\beta)^{r+1} - (1+\beta)}, \quad a = \frac{\beta}{1+\beta}, \quad b = \frac{(r-1)\beta}{1+\beta}, \\ p_k^T &= \frac{r(r+1)\cdots(r+k-1)}{k![(1+\beta)^r - 1]} \left(\frac{\beta}{1+\beta}\right)^k, \\ \mathbf{E}[N] &= \frac{r\beta}{1 - (1+\beta)^{-r}}, \\ Var[N] &= \frac{r\beta[(1+\beta) - (1+\beta+r\beta)(1+\beta)^{-r}]}{[1 - (1+\beta)^{-r}]^2}, \\ \tilde{\beta} &= \frac{\hat{\sigma}^2}{\hat{\mu}} - 1, \quad \tilde{r} = \frac{\hat{\mu}^2}{\hat{\sigma}^2 - \hat{\mu}}, \\ P(z) &= \frac{[1 - \beta(z-1)]^{-r} - (1+\beta)^{-r}}{1 - (1+\beta)^{-r}}. \end{split}$$ This distribution is sometimes called the extended truncated negative binomial distribution because the parameter r can extend below 0. #### A.5.2 The zero-modified subclass A zero-modified distribution is created by starting with a truncated distribution and then placing an arbitrary amount of probability at zero. This probability, p_0^M , is a parameter. The remaining probabilities are adjusted accordingly. Values of p_k^M can be determined from the corresponding zero-truncated distribution as $p_k^M = (1 - p_0^M)p_k^T$ or from the corresponding (a, b, 0) distribution as $p_k^M = (1 - p_0^M)p_k/(1 - p_0)$. The same recursion used for the zero-truncated subclass applies. The mean is $1-p_0^M$ times the mean for the corresponding zero-truncated distribution. The variance is $1-p_0^M$ times the zero-truncated variance plus $p_0^M(1-p_0^M)$ times the square of the zero-truncated mean. The probability generating function is $P^M(z)=p_0^M+(1-p_0^M)P(z)$, where P(z) is the probability generating function for the corresponding zero-truncated distribution. The maximum likelihood estimator of p_0^M is always the sample relative frequency at 0.