University of Connecticut
Department of Mathematics
Preliminary Exam - Risk Theory Section (Math 5637)
Wednesday, August 26, 2009

There are 6 questions. Show your calculations and give the reasons that jus-
tify your steps, although you do not need to prove results formally. A summary
of key formulae for a variety of distributions is attached to this examination.
You may use any hand-held calculator. There are 3 hours for the exam. Mark
your candidate number clearly on each blue book or page that you submit, but
do not identify yourself in any other way.

1. Individual loss amounts (ground up) this year follow a Weibull distribution
with mean p and standard deviation V1ip. You expect a uniform 15%
inflation for the coming year. What will be the variance next year for loss
amounts that are subjected to a 100 deductible per loss, but with losses
prior to the deductible limited to 1,000 per loss? Give the answer for the
"per loss" variable, not the"per payment" variable. Let p = 350.

2. Write an explicit expression for the 5th raw moment of the normal distri-
bution N(u,o?).

3. Let S(£) = X1+ ...+ Xn( where N(t) is Poission with frequency 15t and
the X’s are independently and identically distributed with the property
that the conditional distribution S{T)N(f) = N is a gamma distribu-
tion with parameter & = N and mean 2N for each integer N. De
fine L = maxesq {(S(t) — 44t), } to be the maximum aggregate loss ran-
dom variable with premium accumulatlon rate ¢ = 44. Express L as
L = Ky + ... + Kar where M is a random counting variable and the K’s
are independent and identically distributed. Approxiimate K (by round-
ing) using a discrete distribution with whole integer units. Calculate the
resulting approximate values for

(a) the probability ¢(3) of ruin from a starting surplus of 3.

(b) the conditional tail expectation B [{L|L > 3] for the maximum aggre-
gate loss random variable at probability level 1 — 1(3).



4. A surplus process is defined by u(f) = u +ct — S(t) where S{I) is &
compound Poisson process with A = 200 and an exponential individual
loss distribution with parameter 4§ = 1. The premium accumulation rate
is ¢ = 67. Write an exact formula (with no unknown coefficients) for the
derivative f%Q of the probability of ruin ¥(¢) as a function of the initial
surplus u. Make sure to identify any points where the formula changes.

5. An event frequency variable is known to follow a Poisson distribution for
each risk exposed to the event. The Poisson frequency A varies, however,
among the 600,000 risks exposed to the event. In fact, A is distributed
across the entire population of risks as a sum of twenty-five independens
gamma random variables, all having the same B (or 8) parameters. The
first has an « parameter of 0.2, the second 0.4, ... , the twenty-fifth an
o parameter of 5. Finally, suppose that the population of risks suddenly
increases to 1,000,000 but does so in a way that the aggregate event prob-
ability distribution is proportionally unchanged. What are the mean,
variance, third, and fourth central moments of the event frequency for the
new population of 1,000,0007

6. An aggregate loss distribution F(x) for the aggregate loss variable X fol-
lows a gamma distribution with parameters o = 5 and # =10. What is
the conditional tail expectation CT'E()) for aggregate losses at the prob-
ability level A = P[X < 60]7



Appendix A

An Inventory of Continuous
Distributions

A.1 Introduction

The incomplete gamma. function is given by

x
Moz} = F—(la-)—fo et dt, a>0, x>0

with I'{a) = f > letdt, o> 0.
0

Also, define
o0
Gloyz) = f t>letdt, x> 0.
ke
At times we will need this integral for nonpositive values of . Integration by parts produces the relationship

e

Glayz) = —

1
+ —~G{e + 152}
o o

This can be repeated until the first argument of G is o + k, a positive number. Then it can be evaluated
from

Gla+ kyx) = Mo+ k)il — T{a+ k;z)].

The incomplete beta function is given by

T(a+1b) [

Blabie) = 5550 Jy

1 -8 tdt, a>0,b»0 0<z <],
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A.2 Transformed beta family

A.2.3 Three-parameter distributions
A.2.3.1 Generalized Pareto (beta of the second kind)—a, 0,7
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A.2.3.3 Inverse Burr (Dagum)—r,8,7
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A.2.4 Two-parameter distributions
A.2.4.1 Pareto (Pareto Type II, Lomax)—c,§

ab® g\
@) = gigpn Py =1- ()
k ——
E[X* = Ik 4}21;(0‘ B i<k<a
kgl
E{X*] = Gl if k is an integer
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BiX Az] = %[1-(93?_9)&"1, a1
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A.2.4.2 Inverse Pareto—r,8
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A.2.4.3 Loglogistic (Fisk)—y,#
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A.2.4.4 Paralogistic—o, 0

flz)
E[x%)

VaR,(X)
E[(X A )"

mode

i

This is a Burr distribution with v = c.

o’ (w/6)*
z[l + (x/g)x]o+?
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A.2.4.5 Inverse paralogistic—r,#
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mode

i

This is an inverse Burr distribution with v = 7.
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A.3 Transformed gamma family

A.3.2 Two-parameter distributions
A.3.21 CGamma—o,f
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A.3.2.2 Inverse gammma (Vinei)—a,§

(9/$)a€——9/m
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A.3.3 One-parameter distributions

A.3.3.1 Exponential—08

flzy =
M) =
E[X* =
VaR,(X) =
TVaR,(X) =
EiX Ax]
E[(X A x)¥]

mode =

A.3.3.2 Inverse exponential—0

f(z)

E[X*]
VaR,(X)
E[(X A x)¥]
mode

e—%/9
g
(1-6t)7" BX* =6"T(k+1), k>-1

g%k!, if k is an integer
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~0In{t —p) -+ 8

(1 — e~ /%)

O T(k + 1Tk + 1;0/0) +2Fe™?, k> -1
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0

Flz)=1-e/°
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= s F(z) = e %"
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A.4 Other distributions

A.4.1.1 Lognormal—y,o (u can be negative)

@ = fiitey 1 2w

X% = exp(ku+k0”/2)

i

Bl(X A z)f]

mode exp(pt — o)
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o
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A.4.1.2 Inverse Gaussian—y, 0

f(=) (véw%g)mexp(—ggj), Zxx;#
s - L0 m @], o5

exp [g (im w?fg»%)}, t<§%§= EiX]=up, Var{X]m;ﬁ/g
send = wopafe ()] -men (2)o(8)]

A.4.1.3 log-t—r, u,¢ (u can be negative)

i

il

M(2)

Let Y have a t distribution with 7 degrees of freedom. Then X = exp{¢Y + u) has the log-t distribution.
Positive moments do not exist for this distribution. Just as the t distribution has a heavier tail than the
normal distribution, this distribution has a heavier tail than the lognormal distribution.

"(5)

flz) = (r+1)73"

2o JFT (%) {1 + _?1: (lnwo:-— u)z]

Flz) = F (ln xg_ £ ) with F,{£) the cdf of a t distribution with r d.f,,
1 r 1 T
— P < gt
37129 (lnm—u) ’ Ocoseh
+
F(z) = 7
1"%35 %a‘; ]T =1, =€
B
L o
A.4.1.4 Single-parameter Pareto——a, §
A 9 F(z) =1~ (8/z) 9
f(-’IJ) = Wa T > (I)" w(/m)a >
IR ¥ /-1
VaR,(X) = 61 —p)~Ve TVaR,(X) = gg{-%—_%ww, a>1
k k I+
b o ob e o ke S
BIXY = =, k<o BIX Aol = oo~ g £ 20
mode = @

Note: Although there appears to be two parameters, only « is a true parameter. The value of 8 must be
set in advance.
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A.5 Distributions with finite support

For these two distributions, the scale parameter # is assumed known.

A.5.1.1 Generalized beta—a,b,0,7

flz) = —gg—);%u“(zmu)b"lg, O<x<f, u={x/6)
Flz) = pBla,bu)
v O T(a+b)a+k/7)
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A.5.1.2 beta—aq,b,0
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O P{a+bBT(at+k)
EXY = Foraesiwm T
E[xX* = O afa+1) (atk—1) if k& is an integer
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B O*ala+1)---(a+ k1) .
E((X £a)T] = (a+b}(a~%~b+1)-~-(a+b+km1)ﬁ(a+k’b’”)

+a*[1 ~ B{a, by u)]




Appendix A
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A.2 Introduction

The 16 models fall into three classes. The divisions are based on the algorithm by which the probabilities are
computed. For some of the more familiar distributions these formulas will look different from the ones you
may have learned, but they produce the same probabilities. After each name, the parameters are given. All
parameters are positive unless otherwise indicated. In all cases, py is the probability of observing k losses.

For finding moments, the most convenient form is to give the factorial moments. The jth factorial
moment is gy = BIN(N — 1)+ (N — j + 1}}. We have E[N] = p; and Var(N) = o) + sy ~ #3hy-

The estimators which are presented are not intended to be useful estimators but rather for providing
starting values for maximizing the likelthood {or other) function. For determining starting values, the
following quantities are used {where ny is the observed frequency at & (if, for the last entry, ny represents
the number of observations at k or more, assume it was at exactly k) and n is the sample size]:

1 o0 1 o0
L= — k‘, 52 = — 2 v Az_
12 " kg——l T, O - kilk' g, - [

When the method of moments is used to determine the starting value, a circumfiex (e.g., A) is used. For
any other method, a tilde {e.g., A) is used. When the starting value formulas do not provide admissible
parameter values, a truly crude guess is to sef the product of all A and 8 parameters equal to the sample
mean and set all other parameters equal to 1. If there are two A and/or B parameters, an easy choice is to
set each to the square root of the sample mean.

The last item presented is the probability generating function,

P(z) = Elz"].
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A.3 The (a,b,0) class
A.4 The (a,b,0) class

A.4.1.1 Poisson—A>A

iy K
Po = GWA, O}:O, bmA Pr € k:]A
EIN] = X, Var[N]=2A P(z) = 1)
A.4.1.2 Geometric—_3
1 _ B - @
Po 1+6: awl‘i’,ﬁ’ b=10 Pkw(1+5)k+1
EN] = B, VarN]=p5(1+p) P(z) =L~ Bz~ 1)

This is a special case of the negative binomial with r = 1.

A.4.1.8 Binomial-—q,m, (0 < ¢ < I, m an integer)

g o (mtld

wo= (1-gn a=-pl b=
Py = (T;:) qk(l - g)m—-k, k=0,1,...,m
BN = mg ValN=mgl-q)  P()=[+a-1"

A.4.1.4 Negative binomial—g, r

p = (1+8), a=-Lb_ p=l"1F

1+ 1+8
rr+1)---(r+k-1)8"
Fr k(L + ByrrE \
EIN] = 78, Var[N]=rB(1+f) Pl)=[1- Bz~ 1]

A5 The (a,b,1) class

To distinguish this class from the (a,b,0) class, the probabilities are denoted Pr(N = k) = p or Pr(N =
k) = pI' depending on which subclass is being represented. For this class, p}/ is arbitrary (that is, it is a
parameter) and then p} or p{ is a specified function of the parameters o and b. Subsequent probabilities are
obtained recursively as in the (a,b,0) class: p = (a+b/k)p} ., k= 2,3,..., with the same recursion for pf
There are two sub-classes of this class, When discussing their members, we often refer to the “corresponding”
member of the (a,b,0) class. This refers to the member of that class with the same values for a and b. The
notation py will continue to be used for probabilities for the corresponding (a, b, 0} distribution.
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A.5.1 The zero-truncated subclass

The members of this class have pf = 0 and therefore it need not be estimated. These distributions should
only be used when a value of zero is impossible. The first factorial moment is g1y = (a+0)/ [{(1-a)(1 —po)l,
where pg is the value for the corresponding member of the (a,b,0) class. For the logarithmic distribution
(which has no corresponding member), yiy = 5/ n(1+8). Higher factorial moments are obtained recursively
with the same formula as with the (a, b,0) class. The variance is (a+5)[1 —(a-+b+ Dpa)/[(3 — @) (1= po)]? For
those members of the subclass which have corresponding (a, b, 0) distributions, pr = pp /(1 — po).

A.5.1.1 Zero-truncated Poisson—2>

A
T - = ==
2 e)\’”l, a 0: b A:

Ak
Y E—
Pe = W1y

EINl = A/(1-e™), VarlN] = AL — (A -+ D)2/ (1~ e M),
A = In(ni/ny),
e —1

A.5.1.2 Zero-truncated geometric—f

I -
p{ - 1+ﬂ: a""1+}8$ b_{];
_ ﬁk—i
p}f - (1+ﬁ)k,
E[N] = 14§, Var[N}=p(1+5),
6 = :&'—1)
I O e Ol O
e = —a+aT

This is a special case of the zero-truncated negative binomial with r = 1.

A.5.1.3 Logarithmic—3

r . B P B
R N e, M E AN
T ﬁk
Pe = R+ pF I+ B)’
E[N] m [n’/ln(1+’3), Var[N]miB[l”?'ﬁlIilﬁilzgl“!‘ﬂ)],
B o= %&—1 or WQ(;ETE)’
1
Q) = Inft - B(z — 1)}
i Y

This is  limiting case of the zero-truncated negative binomial as r — Q.
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A5.1.4 Zero-truncated binomial—g,m, (0 < g <1, m an integer)

o7 = ﬂ;(izlqzq;;q W_liq, bx("fii?q,
pr = W, k=12...,m,

BN = g

Var(N] = mg((1 — q)[; 51(; k! ;):]Lg)(i —9"
i = £,

Plz) = Ltaz-D"—-01-g™

A.5.1.5 Zero-truncated negative binomial—g,r, (r > ~1,7 # 0)

_ rf3 B _{r=-1)B
po= A7 F—a+8 " 1+p b=775
r k=1 B\
P = KT+ p) - 1] (1+!3)’
_ rf
S e e

_ BB~ A+ BB+ B
Var|N] A48 ,

2 .
)a = 9.7'"‘11 7= ,\2“ T
i &%~ i
_ BBl -1+ 87
e = R S

This distribution is sometimes called the extended truncated negative binomial distribution because the
parameter r can extend below 0.

A.5.2 The zero-modified subclass

A zero-modified distribution is created by starting with a truncated distribution and then placing an arbitrary
amount of probability at zero. This probability, pd, is a parameter. The remaining probabilities are
adjusted accordingly. Values of pﬂ"' can be determined from the corresponding zero-truncated distribution
as pM = (1—p}!)pL or from the corresponding (a, b, 0} distribution as pM = (1 —plf)pr/(1~po}. The same
recursion used for the zero-truncated subclags applies.

The mean is 1 — p}! times the mean for the corresponding zero-truncated distribution. The variance is
1—pM times the zero-truncated variance plus p’ (1 —pf’) tines the square of the zero-truncated mean. The
probability generating function is PM(z) = pj? + (1 — p{’)P(2), where P(z) is the probability generating
function for the corresponding zero-truncated distribution.

The maximum likelihood estimator of pd! is always the sample relative frequency at 0.



