University of Connecticut
Department of Mathematics
Preliminary Examination - Risk Theory (Math 395)
August 22, 2008, ¢ a.m.

There are 5 questions. Show all of your calculations and give the reasons
that justify your steps, although you do not need to give formal proofs for your
results. A summary of key formulas for a variety of distributions is attached.
You may use any hand-held calculator. There are 3 hours for $his examination.
Mark your candidate number clearly on each blue book or page that you submit,
but do not identify yourself in any other way. ‘

1. The Hermite polynomials are defined to be the polynomials H,{x) that
make the following expression true where ¢(z) = e~#*" is the standard

normal density:
¢ (z) = Halz)d(z)-

Use Fag’s Formula to help you write down the general formula, including
the coefficients, for the polynomial Hy(z).

2. A certain accident probability follows a Poisson distribution for any partic-
ular exposed risk in a population of 1,000,000 total exposures. Different
exposed risks are characterized by different Poisson frequency parameters
). The frequency parameter ) is distributed across the entire population
as a sum of ten independent gamma random variables, all having the same
8 (or 8) parameters. One of them has o parameter o = 1, three of them

© have a = 2, and six of them have o = 3. Finally, suppose that the pop-
ulation of exposures increases to 1, 500, 000 bust does so in a way that the
aggregate accident probability distribution is proportionally unchanged.
What are the mean, variance and third central moment of the accident
frequency for the new population of 1,500, 000 exposures?

3. A surplus process is defined by u(2) = u-+ct—S(f) where 5 (t} is cornpound
Poisson with A = 400 and individual loss distribution p(z} = 2¢™**. What
is the largest premium accumulation rate ¢ for which the probability of
ruin (u) is completely independent of the initial surplus u? Be sure to
explain why your answer is the correct one.



4. Let S(t) = X1 + ... + Xy where N () is Poisson with frequency 20t
and the X’s are are independently and identically distributed with the
property that the conditional distribution of S(#), conditional on N(f) =
N*, is a gamvma distribution with parameter o = N* and mean 3N*
for each integer N*. Let L = maxgzo {(S(t) — 66t) .} be the maximum
aggregate loss random variable with premium rate ¢ = 66. Express L=
Ky + ... + Ky where M is a random counting varizble and the K's are
i.i.d. Approximate K by rounding using a discrete distribution with whole
integer units. Celculate the resulting approximate values for

(a) the probability 1(4) of ruin from a starting surplus of 4.
(b) the expected value B [(L —4)1|L > 4] for the largest excess of accu-

mulated losses over the accumulated premiurn plus starting surplus
of 4, contingent upon ruin ever occuring.

5. Individual loss amounts {ground up) this year follow a Weibull distribution
with mean ¢ and standard deviation 8. Next year you confidently expect
loss amounts to inflate by 10% uniformly across the bhoard. What will be
the standard deviation next year for loss amounts that are subjected to a
100 deductible per loss, but with losses prior to the deductible limited o
1,000 per loss. Give the answer for the "per loss" variable, not the "per
payment” veriable. Assume § = 300.



Appendix A

An Inventory of Continuous
Distributions

Al Introductienr

The incomplete gamma function is given by

T{ogz) = f(l—a}:/{, t*-te~tdt, a>0,z>0

le.s)
with I'(ex) = / e~te™tdt, o> 0
0
When o < 0 the integral does not exist. In that case, define

== .
t==lgtdy, z >0

()G z) = f

R

Integration by parts produces the r'ela.tionship

T{e)G{oy ) = ——xaz—m + I‘(a;— } Gle —i—‘l;:c)

. which aliows for recursive calculation because for & > 0, I(@)G(esz) = T(e){l — (e )
The incompiete beta function is given by

Dla+d) [ e bee 1 .
a,byz) = =t 1 —1¢ dt, a>0,06>0 0<s <L
Blebia)=Fayeq) o © 00
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A.2 Transformed beta family

A.2.3 Two-parameter distributions

A.2.3.1 Parsto—a,d
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f(z)

ElX¥
BHX A I)k]

mode

I

'H“‘l(l ~y)"Fdy + z* [1 - (

6 )-, all &
z+

x T
a:+9> }, k>—T

, T>1% ekel
Ae/6)" SO .
z{1 + (z/8)7]? Fla)=u, v= 1+ (z/8)y
T+ k)T - kfy), —v<k<y

O°T(1+ k/7)T(L = /AL +K/7. 1

_ /7 :
B(%ﬁ) , y>1,elsel

= kfviu) + 2 (1~ ),

k > —ry



APPENDIX A, AN INVENTORY OF CONTINUQUS DISTRIBUTIONS

A.2.3.4 Paralogistic—ao, ¥

This is a Burz distribution with v = c.

_ ot (x/6)" o _ 1
@ = fixEpes TP YT Eme
k
BlXH = 9F(1+kécz3¥1)‘(awk/a)’ ca<h <
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mode = 8(—35—_1_—}:1*)1 L oa>l, ekel

A.2.8.5 Inverse paralogisticw,8

This is an inverse Burr distribution with v = .
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A.3 Transformed gamma family

A.3.2 Two-parameter distributions

A.3.2.1 Gamma—ua,f
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A.3.2.2 Ipverse gamma—o, @

M F(z) =1~ 8/z)

e )
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By __ B — o
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mode = &f(a+1)
A.3.2.3 Weibull—6,7
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E[x*] = 8T(Q+k/r), k>-7
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mode = 9(21) . 7> 1, elsed

A.3.2.4 Inverse Weibull—#,7
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A.3.3 One-parameter distributions

A.3.3.1 Exponential--f

emﬂ:/&

fla) = —5 Fla)y=1-¢"*
M) = (-6 EIX* =6T(k+1), k>-1
E[X* = 6!, ifkisan integer
BiX A g} (1 —e™=/%)
B{(X Az)*] = 6T(k+1I(k+1z/8)+ gFe=#/8 k> -1
= O ET(k+1,z/6) 1+ zFe™=% % an integer
mode = 0
A.3.3.2 Inverse exponential-—f
ge—t/= ‘ 8z
fl) = =3 .F(m)=e o
E[X* = 6TQ-k), k<l
B{X Az)Y] = #TA-k)GCE-kb/z)+ zF(1—e7), allk
mode = #8/2
A.4 Other distributions
A4l Lognormal———p,ér (,u can be negative)
o) = e/ =42/ 2= veros Fz) = &(2)

E(X*] = exp(kp+ k*0*/2)
B(XAnt] = exp(kp-+.k2a2/z>@(%o~‘?—:—’5‘f)+z'={1«~F(x>J
mode = exp(p—o?)
A.4.1.2 Inverse Gaussiap-u, &

¢ 1/2 gz* T —
@) = (W) e

Flz) = @ {z (g)m} + exp(28/ )@ {_y (g)l/z} 4= : "
wo = ws(t( i EE)] e vetn=s
EXha} = z-pz@ {z (g)wz} — py exp(26/1)8 [-“y (g)lm]
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A.4.1.3 Single-parameter Pareto——o, ¢

fe) = ;‘f:—l’ z >0 Flx)=1- (6/z)%, z>8
g* " k9%
B[x* i M= -
(x*#] =, k<a (X A = S5 ~ o e
mode = §

Note: Although there appeé.rs to be two parameters, only o is a true parameter. The value of & must be
set in advance. ;

A.5 Distributions with finite support

Tor these two distributions, the scale parameter 8 is assumed known.

A.5.1.1 Generalized beta—a, b, 8,7

fm) = g%%z%u“{}. - u)b_'lg-, O<z<l, us=(x/8) - '
Flz) = Bla,bu)
T+ bT(a+k/7) )
BIXT = Foytessaim - o0
k |
B(X Az)] = HI,I(‘STJE;T 1(:;:;? Bla + b/ by) + k1 — Bla, b))

A.5.1.2 beta—a,b,d

f(m) = g——((—g}—;%))-ua(l—-u)b”lé, D<z<8, u;m/G‘

Flz) = pla,bv)
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EXY = wotesrir ! 0"
K - - —
BlX*) = 0"ala+1) - (atk—1) if k is an integer

(a+b)a+b+1)- (a+tb+k—-1)"
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B.2 The (a,b,0) class

B.2.1.1 Poisson—>

~Ark
Py = e”)‘, a=10, b=2A\ pkme;)\
EN] = A, Var[N}=2X P(z) = e
B.2.1.2 Geom;etric"mﬁ
_ _ g
po = 1/(1+ﬁ), a=p/(1+p5), b=0 Pe = AL AR
BN] = B, Vor{N]=p(1+5) Plz)=[1~-plz~-1)]"
This is a special case of tHe negative binomijal with r = 1.
B.2.1.3 Binomial—g,m, {0 < ¢ < 1, m an integer)
po = (-9 a=-g¢/(l-q), b=(m+Dg/(l-g)
Py = (I’;:)qk(l‘"Q)m_k» k=0) 1,...,17?.
E[N] = mg, Var[N]=mg(l~q) Pz} = [1+q(z - 1"
B.2.1.4 Negative binomial—g,r | |
po = (487, ae=p/1+p), b={-15/1+0)
etk ~ 18
P = PIFEY)
EIN) = 8, Var[N]=r3{1+5) Plzy=[1~8z-1]7



