Topology 307-Prelim

- 1. If $f: X \longrightarrow Y$ is a continuous map from a separable space X onto a space Y, must Y be separable? Prove or give a counter example.
- 2. Let $\{K_n|n\in N\}$ be a decreasing sequence of nonempty, compact subsets of a Hausdorff space X. If U is an open set in X with $\bigcap_{n=0}^{\infty}K_n\subset U$, prove that $K_n\subset U$ for some n. (N denotes the set of positive integers.
- 3. Let $f: X \longrightarrow Y$ be a continuous map and let $G = \{(x, y) \in X \times Y | y = f(x)\}$, where G has the subspace topology inherited from $X \times Y$.
 - (a) Prove that X is homeomorphic to G.
 - (b) If Y is a Hausdorff space, then prove that G is a closed subset of $X \times Y$.
- 4. Let $p: X \longrightarrow X/\sim$ be the quotient map induced by an equivalence relation \sim on a space X. Suppose \mathcal{T} is a topology on X/\sim such that p is continuous with respect to \mathcal{T} and such that an arbitrary map $g: X/\sim \longrightarrow Y$ is continuous with respect to \mathcal{T} precisely when its composite $g\circ p: X \longrightarrow Y$ is continuous. Must \mathcal{T} be he quotient topology? Prove or disprove.
- 5. Let A and B be subsets of a topological space X such that $A \cup B$ and $A \cap B$ are both connected.
 - (a) If A and B are both closed subsets of X, prove that A is connected.
 - (b) Is the hypothesis that A and B be closed really needed to prove that A is connected? Justify your answer.