Ph.D. Preliminary Examination Math 303 – Measure and Integration

General instructions. Do any four of the five problems.

- 1. Let (X, A) be a measurable space, that is, X is a nonempty set and A is a σ -algebra of subsets of X. Let $<\mu_k>_{k=1}^{\infty}$ be a sequence of (positive) measures on A such that $\mu_k(X)=1$ for all k, and let μ be a measure on A such that, for each $A\in A$, $\lim_{k\to\infty}\mu_k(A)=\mu(A)$ (so necessarily μ is a positive measure and $\mu(X)=1$).
 - (a) Show that if $f: X \to \mathbb{R}$ is bounded and \mathcal{A} -measurable, then

$$\int f \, d\mu = \lim_{k \to \infty} \int f \, d\mu_k.$$

[Hint: It's simple.]

(b) Show that if $f:X\to\mathbb{R}$ is nonnegative-valued and \mathcal{A} -measurable, then

$$\int f \, d\mu \le \liminf_{k \to \infty} \int f \, d\mu_k.$$

(c) Now we specialize: let $X=\mathbb{Z}_+=\{0,1,2,3,\ldots\}$, let \mathcal{A} consist of all subsets of X, let $f:X\to\mathbb{R}$ be f(n)=n, and let the measures μ_k and μ be determined by

$$\mu_k(\{0\}) = 1 - k^{-1}, \quad \mu_k(\{k\}) = k^{-1}, \quad \mu_k(\{n\}) = 0 \text{ if } n \notin \{0, k\};$$
$$\mu(\{0\}) = 1, \quad \mu(\{n\}) = 0 \text{ if } n \neq 0.$$

What does this example illustrate about (a) and/or (b), and why?

2. Let (X, \mathcal{A}, μ) be a measure space and let $f: X \to \mathbb{R}$ be \mathcal{A} -measurable. Use the Fubini-Tonelli theorem to show that, if 0 , then

$$\int_X |f(x)|^p d\mu(x) = \int_0^\infty pt^{p-1}\varphi(t) dt$$

where $\varphi(t) = \mu\{x: t < |f(x)|\}$.

3. Let $\langle a_k \rangle_{k=1}^{\infty}$ and $\langle r_k \rangle_{k=1}^{\infty}$ be sequences of real numbers with $\sum_{k=1}^{\infty} |a_k| < \infty$. Show that

$$\sum_{k=1}^{\infty} \frac{a_k}{\sqrt{|x-r_k|}}$$

converges absolutely for almost all (with respect to Lebesgue measure) $x \in \mathbb{R}$. [Hint: Tackle $x \in [-n,n]$ first.]

- 4. Let (X, A, μ) be a measure space, let $\langle f_k \rangle$ be a sequence of real-valued A-measurable functions on X, and let $f: X \to \mathbb{R}$ be A-measurable. Consider the three assertions: (S₁) $f_k \rightarrow f$ almost everywhere;
 - (S₂) $f_k \to f$ in measure $(\lim_{k \to \infty} \mu\{x : |f_k(x) f(x)| \ge \varepsilon\} = 0, \forall \varepsilon > 0)$;
 - (S_3) $f_k \to f$ in mean $\left(\lim_{k \to \infty} \int_Y |f_k(x) f(x)| d\mu(x) = 0\right)$.
 - (a) Of the six possible implications among these, which are always true? (No proofs)
 - (b) Which implications are true provided $\mu(X) < \infty$? (No proofs)
 - (c) Prove an implication that is always true.
 - (d) Select an implication that is true when $\mu(X) < \infty$ but may be false when $\mu(X) = \infty$. Prove it is true when $\mu(X) < \infty$, and give an example to show it may be false when $\mu(X) = \infty$.
- 5. Consider the measure space ([0, 1], \mathcal{M} , m) where \mathcal{M} is the σ -algebra of Lebesgue measurable subsets of [0,1] and m is Lebesgue measure on \mathcal{M} ; the word measurable means M-measurable, and $||f||_p$ and L^p are defined in the usual way with respect to m, 0 . We also define $\Phi(f) = \exp\left(\int \log |f| \, dm\right)$ provided the integral makes sense (in which case it can have any extended nonnegative real value, with the convention $\exp(-\infty) = 0$). Take as given the following facts:
 - If $f \in L^p$ then $\Phi(f)$ makes sense and $\Phi(f) \leq ||f||_p$;
 - If $f \in L^p$ and 0 < p' < p then $f \in L^{p'}$ and $||f||_{p'} \le ||f||_p$; If $f \in L^{\infty}$ then $(\star) \lim_{p \to 0+} ||f||_p = \Phi(f)$.

We prove (\star) if $f \in L^r$, $0 < r < \infty$. We may and shall assume $f \ge 0$.

- (a) Suppose $f \in L^1$ and $f \notin L^{\infty}$. Let $\gamma = \int f dm < \infty$; for each positive integer k let $E_k = \{x : f(x) \ge k\}$, so $mE_k > 0$, let $\gamma_k = \frac{\int_{E_k} f \, dm}{mE_k}$ be the average value of f on E_k , and define $g_k:[0,1]\to\mathbb{R}$ by $g_k\equiv f$ on \tilde{E}_k (the complement of E_k in [0,1]) and $g_k \equiv \gamma_k$ on E_k . Show that if $0 then <math>||f||_p \le ||g_k||_p$. [Hint: $f^p = f^p \cdot 1$]
- (b) Continuing with notations and conventions from part (a), show that $\limsup_{k\to\infty}\int \log g_k\,dm \leq \int \log f\,dm$, and deduce that (\star) holds for f.
- (c) We have now shown that (\star) holds for any $f \in L^1$. Deduce that (\star) holds for any $f \in L^r$ where r is arbitrary subject to $0 < r < \infty$.
- (d) Give an example of $f \in L^1$ such that $||f||_1 > 0$ but $\lim_{n \to 0+} ||f||_p = 0$. $\left[Hint: \int_0^1 -\frac{1}{x} \, dx = -\infty.\right] .$