	?re	liminary	Exam
--	-----	----------	------

Aug 23. 04

		•
Name:	ID No:	Section:

- 1. Prove or disprove that every compact Hausdorff space is normal.
- 2. Let $[0,1] \times [0,1]$ be equipped with the dictionary order topology. Prove or disprove the following statements.
 - a) $[0,1] \times [0,1]$ is connected.
 - b) $[0,1] \times [0,1]$ is path connected.
- 3. Let X and Y be topological spaces and assume that $X \times Y$ has the product topology. Let $p: X \times Y \longrightarrow X$ be the projection. Prove or disprove each of the following statements:
 - (a) p is open.
 - (b) p is closed.
 - (c) If X and Y are both connected, then $X \times Y$ is connected.
- 4. Let X be a non-compact, locally compact, Hausdorff topological space. Let $\{a,b\}$ be a two-point set such that $X \cap \{a,b\}$ is empty. Let \mathcal{T} be a topology on $Y = X \cup \{a,b\}$ satisfying (1) Y is compact and connected with respect to \mathcal{T} and (2) the subspace topology induced in X from \mathcal{T} is the same as the original topology on X.
 - a) Construct such a topology T on Y.
 - b) Prove or disprove that T in (a) is Hausdorff.
 - c) Prove or disprove that the intersection of any two compact subsets of Y is compact with respect to \mathcal{T} in (a).
 - d) Is such a \mathcal{T} unique on Y up to a homeomorphism?
- (a) Define what it means for a topological space to be compact (in terms of coverings by open sets).
 - (b) Prove that X is compact if and only if every collection of closed sets in X with the finite intersection property has a nonvoid intersection.