- 1. (a) Define what it means for a topological space to be compact (in terms of coverings by open sets).
 - (b) Prove that X is compact if and only if every collection of closed sets in X with the finite intersection property has a nonvoid intersection.
- 2. Let X and Y be topological spaces and assume that $X \times Y$ has the product topology. Let $p: X \times Y \longrightarrow X$ be the projection. Prove or give a counter example for each statement:
 - (a) p is open.
 - (b) p is closed.
 - (c) If X and Y are both connected then $X \times Y$ is connected.
- 3. Let R be an equivalence relation on a topological space X and let $p: X \longrightarrow X/R$ denote the projection to the set of equivalence classes. There is the quotient topology \mathcal{T}_Q on X/R defined by p. Let \mathcal{T} be an arbitrary topology on X/R that satisfies the following property: Given any function $g: X/R \longrightarrow Y$, g is continuous (with respect to \mathcal{T}) if and only if the composition $g \circ p$ is continuous.

Must \mathcal{T} be the quotient topology \mathcal{T}_Q ? Prove or give a counter example.

- 4. Prove or give a counter example for each statement:
 - (a) A compact subspace A of a space X is closed in X.
 - (b) Let X be a compact space and Y be Hausdorff space. Every continuous map $g: X \longrightarrow Y$ is also a closed map.
- 5. Let $\{X_{\alpha} | \alpha \in J\}$ be an indexed family of topological spaces. Prove that $\operatorname{Cl}(\prod_{\alpha \in J} A_{\alpha}) = \prod_{\alpha \in J} \operatorname{Cl}(A_{\alpha})$ in $\prod_{\alpha \in J} X_{\alpha}$.