3600

M340 — Preliminary Exam in Complex Analysis

- 1. (a) Show that there is a complex differentiable function defined on the set $\Omega = \{z \in \mathbb{C} : |z| > 4\}$, whose derivative is $\frac{z}{(z-1)(z-2)(z-3)}$?
 - (b) Is there a complex differentiable function on Ω whose derivative is $\frac{z^2}{(z-1)(z-2)(z-3)}?$
- 2. Evaluate $\int_0^{2\pi} e^{e^{i\theta}} d\theta$.
- 3. Suppose f and g are entire functions and $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Prove that there is a constant c such that f = cg.
- 4. (a) Prove that every one-to-one conformal mapping of $\mathbb{D}=\{z\in\mathbb{C}:|z|\leq 1\}$ onto itself is a linear fractional (Möbius) transformation.
 - (b) Prove that every one-to-one conformal mapping of $\mathbb{D}=\{z\in\mathbb{C}:|z|\leq 1\}$ onto a disc $B=\{az\in\mathbb{C}:|z-a|\leq r\}$ for some $a\in\mathbb{C}$ and r>0 is a linear fractional transformation.
- 5. Show that $f(z) = \frac{z}{e^z 1}$ has a removable singularity at z = 0 and that f has a power series expansion $f(z) = \sum_{n=1}^{\infty} c_n z^n$. Calculate c_0 and c_1 and show that $c_{2n+1} = 0$ for $n \ge 1$, i.e. $\sum_{n=1}^{\infty} c_n z^n$ is an even function). Find the radius of convergence of the series.
- 6. Let 0 < r < R and $A = \{z \in \mathbb{C} : r \le |z| \le R\}$. Show that there exists a positive number $\epsilon > 0$ such that for each polynomial p

$$\sup_{z \in A} \left| p(z) - \frac{1}{z} \right| \ge \epsilon$$

7. Evaluate the following real integral by using residues:

$$\int_0^\infty \frac{\cos x}{1+x^2} \, dx = \frac{1}{2} \int_0^\infty \left(\frac{e^{ix}}{1+x^2} + \frac{e^{-ix}}{1+x^2} \right) \, dx$$