Topology

Ph.D. Preliminary Exam

Aug.	22.	2003
**	, ,,	- C C .

Name:	ID	No:	Section
TAULIC.		140:	Section:

Note: Do ONE and ONLY ONE of 6 and 7. Indicate clearly which one you chose.

- 1. Prove or disprove: The countable collection $\mathcal{B} = \{(a,b)|a < b, a \text{ and } b \text{ rational }\}$ is a basis that generates the standard topology on the real line R.
- 2. Let $\{A_{\alpha} | \alpha \in K\}$ be an arbitrary family of subsets of the topological space X. Prove or give a counterexample:
 - (a) $\overline{\bigcup_{\alpha \in K} A_{\alpha}} \subset \bigcup_{\alpha \in K} \overline{A_{\alpha}}$
 - (b) $\bigcup_{\alpha \in K} \overline{A_{\alpha}} \subset \overline{\bigcup_{\alpha \in K} A_{\alpha}}$
- 3. Let $\{X_{\alpha} | \alpha \in K\}$ be an arbitrary family of topological spaces. If each X_{α} is Hausdorff, then prove that the product space $\prod X_{\alpha}$ is also Hausdorff.
- 4. Consider the following subspace of the Euclidean plane:

$$S = \{(x, \sin 1/x) | 0 < x \le 1\} \cup 0 \times [-1, 1]$$

- . Prove or disprove the following statements:
- (a) S is connected.
- (b) S is path connected.
- 5. Prove that the Cartesian product of two compact space with the product topology is compact. Must show your work.
- 6. Define what it means for $p: X \longrightarrow Y$ to be a quotient map. State and prove two theorems about quotient maps. (The points awarded will depend on the difficulty and correctness of the proofs.)
- 7. A topological space is called "paracompact" if every open covering of X has locally finite refinement that covers X.

Prove that every paracompact space is normal.

Good Luck!!