1. Derive an expression for the 6th central moment of a random variable in terms of its cumulant moments κ_j for $1 \leq j \leq 6$.

2. Derive an expression for the third moment of the contingent (i.e. "per payment") excess loss variable $(X - d) |_{X > d}$ in terms of moments and limited moments of X.

3. For a random variable X with continuous support derive expressions for the derivatives of VaR_q and CTE_q with respect to q, the probability level of the risk. What conclusion can you draw about VaR compared to CTE as a measure of risk?

4. Derive the two-parameter Pareto distribution $F(x) = 1 - \left(\frac{\theta}{\theta + x}\right)^\alpha$ from a maximum entropy principle followed by a series of transformations.

5. Let $S = M_1 + \ldots + M_N$ where N is Poisson $\lambda = .75$ and $\{M_j\}$ are i.i.d. Binomial $m = 4$, $q = .25$ and independent of N. Calculate the probability that $S > 4$. Be accurate to at least 3 significant digits.

6. Let K be Binomial (m, q), L be Poisson λ, and M be Negative Binomial (r, β) representing independent frequency of event variables. Suppose that in each case 25% of the events that actually occur fail to be recorded. Derive and identify (i.e. give their names and parameters) the corresponding frequency of recorded events variables, calling them K^*, L^*, and M^*.
