1. (15 points) State and prove the Monotone Convergence Theorem.

2. (15 points)

 (a) Write down the definition of a Stieltjes measure on the real line \mathbb{R}.

 (b) Find all Stieltjes measures $\nu \neq 0$ on \mathbb{R} with
 \[
 \int f \, d\nu = \left(\int f \, d\nu \right) \left(\int g \, d\nu \right)
 \]
 for all non-negative continuous functions f and g.

3. (15 points) Prove or disprove three of the following statements.

 (a) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges in $L^1(\mathbb{R}, dx)$ then it converges in measure.

 (b) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of integrable functions that converges almost everywhere on $[0, 1]$, then it converges in $L^1([0, 1], dx)$.

 (c) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions that converges almost everywhere on $[0, 1]$, then it converges in $L^\infty([0, 1], dx)$.

 (d) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges in $L^1(\mathbb{R}, dx)$ then it converges almost everywhere.

4. (10 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ-finite measure spaces. Let E be a measurable subset of $X \times Y$. Recall that the x-section of E is the set
 \[\{y \in Y \mid (x, y) \in E\}\]
 and the y-section of E is the set
 \[\{x \in X \mid (x, y) \in E\}\].

 Use Fubini’s theorem to prove that if the x-section of E has ν-measure 0 for μ-almost every $x \in X$, then the y-section of E has μ-measure 0 for ν-almost every $y \in Y$.

5. (10 points) Compute
 \[
 \lim_{n \to \infty} \int_{1/n}^{\infty} \frac{n^{3/2}y^{1/2} + y^{1/4}}{n^{2}y^{2} + n^{-1}} \, dy
 \]
 and justify all steps of your reasoning.

6. (10 points) Prove one of the following statements.

 (a) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are measurable then fg is also measurable.

 (b) Let μ be a signed measure. A set A is a null set with respect to μ if and only if $|\mu|(A) = 0$, where $|\mu| = \mu^+ + \mu^-$ is the total variation of μ.