Suppose a species of fish in a lake has population modeled by the logistic population model with growth rate \(k \), carrying capacity \(N \), \(t \) measured in years. Adjust the model to account for the following situations.

a. (4 pts) 150 fishes harvested each year.

b. (4 pts) \(\frac{1}{3} \) of the fish harvested annually.

c. (4 pts) number of fish harvested each year proportional to square root of the number of fish in the lake.

d. (8 pts) If \(k = 0.3 \), \(N = 2400 \) and there are 2400 fishes in the lake when \(t = 0 \), what does model in situation b predict in the long run?

Solution: Quantities involved: \(t \) -- time, measured in years.
\[P(t) \] -- Number of fishes at year \(t \)
\(N \) -- Capacity
\(k \) -- growth rate coefficient.

Since \(t \) is measured in units of years. \(\frac{dP}{dt} \) represents change in the number of fishes per year, therefore

\[kP\left(1 - \frac{P}{N}\right) \]

represents fish growth per year while number of fishes harvested represents fish decrease per year.

a. \[
\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - 150
\]

b. \[
\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - \frac{1}{3}P
\]

c. \[
\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - a\sqrt{P}
\]

here \(a \) represents the proportionality constant.
d. With the given data, we have

\[
\frac{dP}{dt} = 0.3P(1 - \frac{P}{2400}) - \frac{1}{3}P \\
= -\left(\frac{1}{3} - 0.3\right) P - \frac{0.3}{2400}P^2 \\
< 0
\]

as long as \(P > 0 \). Thus the model predicts the number of fishes keep decreasing, eventually to extinction. (Note the decreasing rate at the starting point is \(\frac{dP}{dt} = 0.3 \times 2400(1 - \frac{2400}{2400}) - \frac{1}{3} \times 2400 = -800 < 0 \), the decreasing rate is getting smaller and smaller as \(P \) approaches 0)