Stability and posets

Carl Jockusch, Bart Kastermans, Steffen Lempp, Manny Lerman and Reed Solomon

April 9, 2011
RT_2^2 and CAC

- K_ω is the (countably) infinite graph in which every pair of nodes is connected.
- \overline{K}_ω is the infinite graph in which no pair of nodes is connected.

Theorem (Graph Version of Ramsey’s Theorem for Pairs (RT_2^2))

Every infinite graph contains a copy of K_ω or \overline{K}_ω.

Theorem (Chain–Antichain (CAC))

Every infinite poset has either an infinite chain or an infinite antichain.

In this talk, all chains and antichains are infinite.
For a poset P, define its *comparability graph* G_P by

- domain of $G_P =$ domain of P
- a and b are connected in G_P iff a and b are comparable in P

Then,

- copies of K_ω in G_P are chains in P (and vice versa)
- copies of \overline{K}_ω in G_P are antichains in P (and vice versa)

So, a solution to RT_2^2 in G_P is a solution to CAC in P.

Stability and posets
Carl Jockusch, Bart Kastermans, Steffen Lempp, Manny Lerman and Reed Solomon
How hard is it to solve CAC for a computable poset?

By transferring his results on RT_2^2, Jockusch proved

- In the arithmetic hierarchy: Every computable poset has a Δ_2^0 chain, or a Δ_2^0 antichain, or both a Π_2^0 chain and a Π_2^0 antichain.
- In low hierarchy: Every computable poset has a low$_2$ chain or antichain.

Herrmann proved that you cannot improve these bounds.

- There is a computable poset with no Σ_2^0 chains or antichains.
- There is a computable poset with no low chains or antichains.
A clever idea of Cholak, Jockusch and Slaman

Split RT^2_2 into a stable version SRT^2_2 and a cohesive version CRT^2_2.

Definition

G is **stable** if for every $x \in G$, either x is connected to almost every other node or x is not connected to almost every node.

- SRT^2_2: Every infinite stable graph contains a copy of K_ω or $\overline{K_\omega}$.
- CRT^2_2: Every infinite graph has an infinite stable subgraph.
- $RT^2_2 \iff SRT^2_2 + CRT^2_2$
- CRT^2_2 is strictly weaker than RT^2_2
- Open question: Is SRT^2_2 strictly weaker than RT^2_2?
A clever idea of Hirschfeldt and Shore

Why not do the same thing for CAC?

To do this, they defined a notion of a stable poset (given later).

- **SCAC**: Every infinite stable poset has a chain or antichain.
- **CCAC**: Every infinite poset contains an infinite stable poset.
- **CAC ⇔ SCAC + CCAC**.
- Both SCAC and CCAC are strictly weaker than CAC.
- Analyzing SCAC and CCAC, they proved that CAC is strictly weaker than RT^2_2.
Stable posets

Definition

Fix an infinite poset P. An element $a \in P$ is

- *small* if $a <_P b$ for almost all $b \in P$
- *large* if $b <_P a$ for almost all $b \in P$
- *isolated* if a is incomparable with almost all $b \in P$

$S_P = \text{the set of small elements in } P$
$L_P = \text{the set of large elements in } P$
$I_P = \text{the set of isolated elements in } P$

Definition (Hirschfeldt and Shore)

A poset P is *stable* if either $P = S_P \cup I_P$ or $P = L_P \cup I_P$.
Our work

Why restrict to $P = S_P \cup I_P$ or $P = L_P \cup I_P$ in definition of stability?

Definition

An infinite poset is *weakly stable* if $P = S_P \cup L_P \cup I_P$.

Note that

$$\text{stable} \Rightarrow \text{weakly stable}$$

but not conversely. For example, let P be the linear order $\omega + \omega^*$ viewed as a poset.

- $S_P =$ the elements in the ω part.
- $L_P =$ the elements in the ω^* part.
- $I_P = \emptyset$.

Therefore, P is weakly stable but not stable.
Definition (Comparability graph G_P of poset P)

$G_P = P$ with an edge between a and b if a and b are comparable.

P is a weakly stable poset $\Rightarrow G_P$ is a stable graph

P is a weakly stable poset $\not\Leftarrow G_P$ is a stable graph

For the linear order \mathbb{Z} (viewed as a partial order), we have

- $G_{\mathbb{Z}} = K_\omega$ (and hence is a stable graph), but
- $S_{\mathbb{Z}} = L_{\mathbb{Z}} = I_{\mathbb{Z}} = \emptyset$ (and hence \mathbb{Z} is not a weakly stable poset).

Notice that every copy \mathcal{L} of \mathbb{Z} has an infinite chain which is $\Delta^0_1(\mathcal{L})$.
Theorem (JKLLS)

If an infinite poset has a copy \(P \) such that no chain is \(\Delta^0_1(P) \), then

\[
P \text{ is weakly stable } \iff G_P \text{ is stable}
\]

Assume \(G_P \) is stable but \(P \) is not weakly stable. Fix \(a \notin S_P \cup L_P \cup I_P \).

- \(a \notin I_P \) implies \(a \) is comparable with infinitely many (hence almost all) \(p \in P \).
- \(a \notin S_P \cup L_P \) implies there are infinitely many \(p > a \) and infinitely many \(p < a \).
- If \(b \leq a \), then \(b < p \) for infinitely many \(p \) and hence \(b \) is comparable with almost all \(p \in P \). (Same for \(b \geq a \).)
- Let \(X \subseteq P \) consisting of elements comparable to \(a \). \(X \) is \(\Delta^0_1(P) \).
- Every element of \(X \) is comparable with almost every \(p \in P \).
- There is a chain \(C \in \Delta^0_1(X) \) and hence \(C \in \Delta^0_1(P) \).
Reverse mathematics

These two notions of stability give rise to two different stable versions of CAC.

- **SCAC**: Every infinite *stable* poset has a chain or antichain.
- **WSCAC**: Every infinite *weakly stable* poset has a chain or antichain.

Theorem (JKLLS)

Over RCA₀, SCAC and WSCAC are equivalent.
Arithmetic hierarchy results

For a computable (weakly) stable P,

- each of S_P, L_P and I_P are Δ^0_2
- if P has chains, then P has Δ^0_2 chains
- if P has antichains, then P has Δ^0_2 antichains

For stable posets, we can do better than Δ^0_2.

Theorem (JKLLS)

Every computable stable poset has a computable chain or a Π^0_1 antichain.

However, the dual of this theorem fails.

Theorem (JKLLS)

There is a computable stable poset which has no Π^0_1 chain or computable antichain.
In the case of weakly stable posets, one cannot improve on Δ_2^0.

Theorem (JKLLS)

There is a computable weakly stable poset which has no Π_1^0 chains or Π_1^0 antichains.
Lowness hierarchy

Theorem (Hirschfeldt and Shore)

Every computable stable poset has a low chain or a computable antichain.

The dual of this theorem does hold

Theorem (JKLLS)

Every computable stable poset has a computable chain or a low antichain.

and it can be generalized to weakly stable posets.

Theorem (JKLLS)

Every computable weakly stable poset has a low chain or a computable antichain.

The dual of this theorem is open: Does a computable weakly stable poset have a computable chain or a low antichain?