Problem 1. Determine whether the following sequences converge or diverge. If they converge, find their limit.

\[a_n = \cos \frac{n\pi}{2} \]

The first sequence diverges because (starting with \(n = 0 \)) the values repeat in the pattern 1, 0, -1, 0.

\[a_n = \frac{n^2 + 3n - 2}{5n^2} \]

The second sequence converges to 1/5. (To get this value, switch from \(n \) to \(x \) and use L'Hôpital’s Rule or the fact that it is a rational function in which the degrees of the numerator and the denominator are equal.)

\[a_n = \frac{n^2}{n + 1} - \frac{n^2 + 1}{n} \]

To find the limit of the third sequence, rewrite it over a common denominator.

\[a_n = \frac{n^2}{n + 1} - \frac{n^2 + 1}{n} = \frac{n^3 - (n^2 + 1)(n + 1)}{n(n + 1)} = \frac{n^2 + n + 1}{n^2 + n} \]

From here, you can see the limit is 1.

\[a_n = 2^{1/n} \]

For the third sequence, as \(n \) approaches \(\infty \), the value of \(1/n \) goes to 0. Therefore, the limit is \(2^0 = 1 \).

\[a_n = n^{(-1)^n} \]

The fourth sequence diverges because the absolute values of the terms go to infinity.

\[a_n = \sqrt[n]{n} \]

For the last sequence, you can switch from \(n \) to \(x \) and use L'Hôpital’s Rule.

\[\sqrt[n]{x} = x^{1/n} = e^\frac{\ln x}{1/x} = e^{\ln x/x} \]

By L'Hôpital’s Rule, \(\lim_{x \to \infty} \ln x/x = 0 \) and so the limit of the sequence is \(e^0 = 1 \).

Problem 2(a). Let \(\{a_n\} \) be a strictly decreasing sequence for which each term \(a_n > 0 \). Prove that \(\lim_{n \to \infty} a_n \geq 0 \).

Solution. There a couple of ways you might do this problem. They both start by noting that since \(\{a_n\} \) is a bounded monotonic sequence, then it has to converge. So, the sequence has a limit and the only question is to show that the limit is non-negative.

One method to show that \(\lim_{n \to \infty} a_n \geq 0 \) is to note that since \(\{a_n\} \) is a strictly decreasing sequence which is bounded below, we know it converges to \(\inf A \) where \(A \) is the set of numbers
in the sequence. Since 0 is a lower bound for A, we know that $\inf A \geq 0$ and therefore $\lim_{n \to \infty} a_n \geq 0$.

A second method to show $\lim_{n \to \infty} a_n \geq 0$ is by contradiction. Since we know that the sequence has a limit, we start by assuming that $\lim_{n \to \infty} a_n = c < 0$. We need to derive a contradiction. To get a contradiction, pick a value ε such that $0 < \varepsilon < |c|$, and so $c + \varepsilon < 0$ (since c is negative). Applying the definition of $\lim_{n \to \infty} = c$, there is an N such that if $n \geq N$, then $|a_n - c| < \varepsilon$. Removing the absolute value signs gives

$$-\varepsilon < a_n - c < \varepsilon$$

and so

$$c - \varepsilon < a_n < c + \varepsilon$$

But, as we noted above, $c + \varepsilon < 0$ and so if $n \geq N$, then a_n is negative! This contradicts the fact that each term in the sequence is positive.

2(b). Give a counterexample to show that you cannot in general conclude that $\lim_{n \to \infty} a_n > 0$.

Solution. Define a sequence by $a_n = 1/n$ for $n \geq 1$. The terms are positive and strictly decreasing, but $\lim_{n \to \infty} a_n = 0$.

Problem 3. Let $\sum_{k=0}^{\infty} a_k$ be a convergent series with positive terms. Prove that for every $\varepsilon > 0$, there is an N such that if $n \geq N$, then $\sum_{k=n+1}^{\infty} a_k < \varepsilon$.

Solution. Since the given series converges, let $\sum_{k=0}^{\infty} a_k = S$. By definition, we know that the limit of the partial sums is equal to S. That is,

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_k = S$$

Now, fix $\varepsilon > 0$ and we will try to find an appropriate N. Applying the definition of $\lim_{n \to \infty} \sum_{k=0}^{n} a_k = S$, there is an N such that if $n \geq N$, then $|S - \sum_{k=0}^{n} a_k| < \varepsilon$. (Notice that I have written the difference inside the absolute values in a different order than usual. However, because of the absolute value signs, it doesn’t matter which order we subtract the terms in!) Removing the absolute value signs tells us that if $n \geq N$, then

$$-\varepsilon < S - \sum_{k=0}^{n} a_k < \varepsilon$$

But, $S = \sum_{k=0}^{\infty} a_k$ and so $S - \sum_{k=0}^{n} a_k = \sum_{n+1}^{\infty} a_k$. Therefore, we have that if $n \geq N$, then

$$-\varepsilon < \sum_{k=n+1}^{\infty} a_k < \varepsilon$$

and the right inequality is what we wanted to show.
Problem 4. Determine if the following telescoping series are convergent or divergent. If they converge, find the sum.

\[\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} \]

Solution. Use partial fractions to decompose the fraction.

\[\frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1} \]

which means

\[1 = A(2n+1) + B(2n-1) \]

Solving these gives \(A = 1/2 \) and \(B = -1/2 \). (One way to see this is to plug in \(n = 1/2 \) and \(n = -1/2 \).) Therefore, the \(n \)-th term looks like

\[\frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} \]

The first few partial sums are

\[s_1 = \frac{1}{2(1)} - \frac{1}{2(3)} \]
\[s_2 = \left(\frac{1}{2(1)} - \frac{1}{2(3)} \right) + \left(\frac{1}{2(3)} - \frac{1}{2(5)} \right) = \frac{1}{2(1)} - \frac{1}{2(5)} \]
\[s_3 = \left(\frac{1}{2(1)} - \frac{1}{2(5)} \right) + \left(\frac{1}{2(5)} - \frac{1}{2(7)} \right) = \frac{1}{2(1)} - \frac{1}{2(7)} \]

From here, the pattern emerges: \(s_n = 1/2 - 1/(2n+1) \). To find the value of the original series,

\[\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \lim_{n \to \infty} s_n = \frac{1}{2} \]

Before going on to the second telescoping series, you might try to prove that \(s_n = 1/2 - 1/(2n+1) \) by induction on \(n \). I just stated it above because the pattern is fairly clear from the first few examples, but it a good exercise to prove it by induction. Use the fact that \(s_{n+1} = s_n + a_{n+1} \) and it should fall out relatively easily.

The second sum to consider is

\[\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} \]

For this sum, the partial fraction decomposition is a longer. Since the denominator is a product of degree one factors, we write

\[\frac{2n+1}{n^2(n+1)^2} = \frac{A}{n} + \frac{B}{n^2} + \frac{C}{n+1} + \frac{D}{(n+1)^2} \]
and therefore,
\[2n + 1 = An(n + 1)^2 + B(n + 1)^2 + Cn^2(n + 1) + Dn^2 \]

Plugging in \(n = 0 \) gives us that \(B = 1 \) and plugging in \(n = -1 \) gives us that \(D = -1 \). Therefore, we have
\[2n + 1 = A(n^3 + 2n^2 + n) + (n^2 + 2n + 1) + C(n^3 + n^2) - n^2 \]

Collecting terms of the same degree gives us
\[2n + 1 = (A + C)n^3 + (2A + 2C)n^2 + (A + 2)n + 1 \]

Comparing the \(n \) terms, we see that \(2 = A + 2 \) and hence \(A = 0 \). Comparing the \(n^3 \) terms, we see that \(0 = A + C \) and hence \(C = 0 \). Therefore, our partial fraction decomposition is
\[\frac{2n + 1}{n^2(n + 1)^2} = \frac{1}{n^2} - \frac{1}{(n + 1)^2} \]

The first few partial sums are
\[s_1 = \frac{1}{1^2} - \frac{1}{2^2} \]
\[s_2 = \left(\frac{1}{1^2} - \frac{1}{2^2} \right) + \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{1}{1^2} - \frac{1}{3^2} \]
\[s_3 = \left(\frac{1}{1^2} - \frac{1}{2^2} \right) + \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{1}{1^2} - \frac{1}{5^2} \]

The general pattern emerges that \(s_n = 1 - 1/(n + 1)^2 \). (As above, it is a good exercise to prove this formula by induction on \(n \).) Therefore, our sum is
\[\sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n + 1)^2} = \lim_{n \to \infty} 1 - \frac{1}{(n + 1)^2} = 1 \]

Problem 5. Determine if the following geometric series converge or diverge. If they converge, find the sum.
\[\sum_{n=1}^{\infty} \frac{1 + 2^n}{3^n} = \sum_{n=1}^{\infty} (1/3)^n + \sum_{n=1}^{\infty} (2/3)^n = \left(\frac{1}{1 - 1/3} - 1 \right) + \left(\frac{1}{1 - 2/3} - 1 \right) \]
\[\sum_{n=0}^{\infty} \frac{1}{2^{n/2}} = \sum_{n=0}^{\infty} (1/\sqrt{2})^n = \frac{1}{1 - 1/\sqrt{2}} \]
\[\sum_{n=3}^{\infty} \frac{3^{n-1}}{e^n} = \frac{1}{3} \sum_{n=3}^{\infty} (3/e)^n \text{ which diverges since } 3/e > 1 \]
Problem 6. Let \(f(x) \) be a function which is continuous, strictly positive and strictly decreasing on the interval \([1, \infty)\) such that \(\int_1^\infty f(x) \, dx \) converges. By the Integral Test, the series \(\sum_{k=1}^\infty a_k \) with \(a_k = f(k) \) converges, so we have

\[
\sum_{k=1}^\infty a_k = S
\]

For this problem, you will give an error estimate using the Integral Test for this series. Let \(s_n = \sum_{k=1}^n a_k \) be the \(n \)-th partial sum for this series. The error in using \(s_n \) as an approximation to \(S \) is given by

\[
R_n = S - s_n = \sum_{n+1}^\infty a_k
\]

Draw a picture similar to the ones we used in the proof of the Integral Test to prove that \(R_n \leq \int_n^\infty f(x) \, dx \).

I don't know how to draw this picture electronically but look at Figure 10.4 on page 397 to help you.

Problem 7(a). By the Integral Test, we know that \(\sum_{k=1}^\infty 1/k^3 \) converges. Use Problem 6 to give an upper bound for the error in using \(\sum_{k=1}^{10} 1/k^3 \) to approximate the value of this series.

7(b). What is the least value of \(n \) for which \(s_n = \sum_{k=1}^n 1/k^3 \) is accurate approximation to within \(5 \times 10^{-4} \)?

Solution. To do this problem, notice that the function we are working with is \(f(x) = 1/x^3 \). By Problem 6, we have that the error in using \(s_{10} \) to approximate the given series is less than \(\int_{10}^\infty 1/x^3 \, dx \). Therefore, we calculate

\[
\int_{10}^\infty x^{-3} \, dx = \lim_{t \to \infty} \int_{10}^t x^{-3} \, dx = \lim_{t \to \infty} -1/(2x^2) \big|_{10}^t = \lim_{t \to \infty} -1/(2t^2) + 1/200 = 1/200
\]

To do 7(b), we need to find the least \(n \) such that \(\int_n^\infty x^{-3} \, dx < 5 \times 10^{-4} \).

\[
\int_n^\infty x^{-3} \, dx = \lim_{t \to \infty} \int_n^t x^{-3} \, dx = \lim_{t \to \infty} -1/(2x^2) \big|_n^t = \lim_{t \to \infty} -1/(2t^2) + 1/(2n^2) = 1/(2n^2)
\]

Therefore, we need to find the least \(n \) such that \(1/(2n^2) < 5 \times 10^{-4} \), which is the same as finding the least \(n \) such that \(1/n^2 < 10^{-3} \). I'll leave you to find the exact value of \(n \).

Problem 8. Let \(f_n(x) = (\sin nx)/n \) and let \(f(x) = \lim_{n \to \infty} f_n(x) \) be the pointwise limit of the sequence of functions \(\{f_n(x)\} \). Show that \(f(x) \) is defined for all \(x \) and that \(f(x) = 0 \). Then show that

\[
\lim_{n \to \infty} f'_n(0) \neq f'(0)
\]

This example shows that limits of sequences of functions cannot always be interchanged with derivatives.
Solution. To show that \(f(x) = 0 \), we use the Squeeze Theorem. For any value of \(x \), we have
\[
\frac{-1}{n} \leq \frac{\sin nx}{n} \leq \frac{1}{n}
\]
Since \(\lim_{n \to \infty} 1/n = 0 \), the Squeeze Theorem tells us that \(\lim_{n \to \infty} (\sin nx)/n = 0 \).

To do the second part of the problem, we have \(f'_n(x) = \cos nx \) and therefore, \(f'_n(0) = 1 \) for each \(n \). This tells us that \(\lim_{n \to \infty} f'_n(0) = \lim_{n \to \infty} 1 = 1 \). On the other hand, \(f(x) = 0 \), so \(f'(x) = 0 \) and \(f'(0) = 0 \). Therefore, \(\lim_{n \to \infty} f'_n(0) = 1 \neq 0 = f'(0) \).

Problem 9(a). Prove the following integration formula for integers \(n \geq 1 \).
\[
\int_0^\pi \frac{\sin nx}{n^2} \, dx = \begin{cases}
\frac{2}{n^3} & \text{if } n \text{ is odd} \\
0 & \text{if } n \text{ is even}
\end{cases}
\]

Solution. We calculate the integral by
\[
\int_0^\pi \frac{\sin nx}{n^2} \, dx = \left. -\frac{\cos nx}{n^3} \right|_0^\pi = -\frac{\cos n\pi}{n^3} - \frac{\cos 0}{n^3} = -\frac{\cos n\pi + 1}{n^3}
\]
Suppose \(n \) is odd. In this case, \(-\cos n\pi = -(-1) = 1 \) and the value of the integral is \(2/n^3 \). On the other hand, if \(n \) is even, then \(-\cos n\pi = -1 \) and the value of the integral is \(0 \).

9(b). Prove that the series \(\sum_{n=1}^\infty (\sin nx)/n^2 \) converges absolutely for all \(x \). Let \(f(x) \) denote the value of this sum.

Solution. To test for absolute convergence, we can take the absolute value and use the Comparison Test.
\[
0 \leq \left| \frac{\sin nx}{n^2} \right| \leq \frac{1}{n^2}
\]
Since the series \(\sum_{n=1}^\infty 1/n^2 \) converges, the Comparison Test tells us that \(\sum_{n=1}^\infty (|\sin nx|)/n^2 \) converges and hence the series \(\sum_{n=1}^\infty (\sin nx)/n^2 \) converges absolutely.

9(c). Use the Weierstrass M-Test to prove that the series of functions \(\sum_{n=1}^\infty (\sin nx)/n^2 \) converges uniformly to \(f(x) \).

Solution. To use the M-Test, we note that \(|\sin nx|/n^2 \leq 1/n^2 \) for all \(x \). Therefore, we can set \(M_n = 1/n^2 \). Since \(\sum_{n=1}^\infty M_n = \sum_{n=1}^\infty 1/n^2 \) converges, the M-Test tells us that \(\sum_{n=1}^\infty (\sin nx)/n^2 \) converges uniformly to its limit \(f(x) \).

9(d). Explain why \(f(x) \) is continuous (and hence integrable) on the interval \([0, \pi]\).

Solution. Since \(\sum_{n=1}^\infty (\sin nx)/n^2 \) converges uniformly to \(f(x) \) and since each function \((\sin nx)/n \) is continuous, we know that the uniform limit function \(f(x) \) is also continuous.
9(e). Use the uniform convergence of $\sum_{n=1}^{\infty} (\sin nx)/n^2$ to $f(x)$ to integrate term-by-term and prove the formula

$$\int_0^{\pi} f(x) \, dx = \sum_{k=1}^{\infty} \frac{2}{(2k-1)^3}$$

Solution. To see the process of taking the term-by-term integration, it might be easier to write out our function.

$$f(x) = \frac{\sin x}{1^2} + \frac{\sin 2x}{2^2} + \frac{\sin 3x}{3^2} + \frac{\sin 4x}{4^2} + \frac{\sin 5x}{5^2} + \cdots$$

Because of the uniform convergence, we have

$$\int_0^{\pi} f(x) \, dx = \int_0^{\pi} \frac{\sin x}{1^2} \, dx + \int_0^{\pi} \frac{\sin 2x}{2^2} \, dx + \int_0^{\pi} \frac{\sin 3x}{3^2} \, dx + \int_0^{\pi} \frac{\sin 4x}{4^2} \, dx + \int_0^{\pi} \frac{\sin 5x}{5^2} + \cdots$$

By this first part of this problem, the terms with even n all have integrals equal to 0, so we have

$$\int_0^{\pi} f(x) \, dx = \int_0^{\pi} \frac{\sin x}{1^2} \, dx + \int_0^{\pi} \frac{\sin 3x}{3^2} \, dx + \int_0^{\pi} \frac{\sin 5x}{5^2} + \cdots$$

Again, using the first part, the integrals when n is odd evaluate to $2/n^3$ so we have

$$\int_0^{\pi} f(x) \, dx = \frac{2}{1^3} + \frac{2}{3^3} + \frac{2}{5^3} + \cdots$$

We can write the sum on the right side as $\sum_{k=1}^{\infty} 2/(2k-1)^3$ using the fact that the terms $(2k-1)^3$ as k ranges from 1 to ∞ give us exactly the terms n^3 for the odd numbers n from 1 to ∞.