You must show your work to receive credit.

1. Consider the linear system $\vec{Y}' = A\vec{Y}$ where

$$A = \begin{pmatrix} -3 & 0 \\ -2 & -3 \end{pmatrix}$$

Find the general solution. Solve for $Y_1(0) = 1, Y_2(0) = 0$.
2. Consider the linear system $\vec{Y}' = A\vec{Y}$ where

$$A = \begin{pmatrix} -3 & -3 \\ -2 & 2 \end{pmatrix}$$

Find the eigenvalues, eigenvectors and sketch the phase plane.
3. Consider the linear system \(\ddot{\vec{Y}} = A\dot{\vec{Y}} \) where

\[
A = \begin{pmatrix}
-3 & 2 \\
-2 & -3 \\
\end{pmatrix}
\]

(a) Compute the eigenvalues of \(A \).

(b) Classify the equilibrium at the origin. Sketch the phase plane and classify as source, sink, saddle.

(c) find the solution for the initial value problem \(Y_1(0) = 1, Y_2(0) = 0. \)
4. Find the solution for the problem $y'' + 2y' + 5y = 4 \sin(t) + 2 \cos(t), y(0) = 1, y'(0) = 2$
5. Find the general solution for the problem $y'' + 2y' + y = e^{-t}$. Solve with initial conditions $y(0) = 0, y'(0) = 1$.
6. Find the general solution for the problem $y'' + 9y = \sin(2t)$. Find the solution for the initial value problem $y(0) = 0, y'(0) = 0$.
7. Find the general solution for the problem \(y'' + 9y = \sin(3t) \). Find the solution for the initial value problem \(y(0) = 0, y'(0) = 0 \).