Final Project 1.

Write a Matlab function

\[[U] = \text{my_FD_nonhom_heat}(a, b, T, N, M, g, f) \]

that solves the problem

\[
\frac{\partial u}{\partial t}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) = f(x, t), \quad a < x < b, \ t > 0 \\
u(a, t) = 0, \quad t > 0, \quad \frac{\partial u}{\partial x}(b, t) = 0, \quad t > 0, \\
u(x, 0) = g(x), \quad a < x < b.
\]

by using Crank-Nicolson scheme. The input for the function is the following:

- \(a, b\) – endpoints for the interval \((a, b)\)
- \(T\) – final time
- \(N + 1\)– number of the space points in the method
- \(M + 1\)– number of the time levels
- \(g(x)\) – inline function of the initial condition
- \(f(x, t)\) – inline function of two variables \(x\) and \(t\) (for the RHS).

The output should be the \((N + 1) \times (M + 1)\) matrix \(U\).

```matlab
% Final_project1_check
a = 0; b = 3/2; % define interval (a,b)
T = 1; % define final time T
N = 20; % number of space points
M = 20; % number of time levels
% initial and RHS functions
g = inline('sin(pi*x)','x');
f = inline('sin(pi*x)*((pi^2)*cos(3*t)-3*sin(3*t))','x','t');

% computing solution by Crank-Nicolson method
U = my_FD_nonhom_heat(a, b, T, N, M, g, f);

x = linspace(a,b,N+1);
% exact solution
U_ex = cos(3*T)*sin(pi*x);
% plotting exact and the approximate solution
figure(1)
plot(x,U(:,M+1),'r*', x,U_ex);
figure(2)
times = linspace(0,T,M+1);
```
% check space rate of convergence
fprintf([' dx error space rate of convergence
'])
disp('--')
error = zeros(10,1);
M = 1000;
N = 10;
U = my_FD_nonhom_heat(a, b, T, N, M, g, f);
x = linspace(a,b,N+1)';
U_ex = cos(3*T)*sin(pi*x);
error(1) = norm(U(:,M+1)-U_ex,inf);
for j = 2:5
 N = 10*2^(j-1);
 U = my_FD_nonhom_heat(a, b, T, N, M, g, f);
x = linspace(a,b,N+1)';
 U_ex = cos(3*T)*sin(pi*x);
 error(j) = norm(U(:,M+1)-U_ex,inf);
dx = 2/(10*2^(j-1));
 fprintf([' %1.2e %20.3e %20.5f
'],
dx, error(j), log2(error(j-1)/error(j)))
end
disp('%%%')
% check time rate of convergence
fprintf([' dx error time rate of convergence
'])
disp('---')
error = zeros(10,1);
M = 10;
N = 1000;
U = my_FD_nonhom_heat(a, b, T, N, M, g, f);
x = linspace(a,b,N+1)';
U_ex = cos(3*T)*sin(pi*x);
error(1) = norm(U(:,M+1)-U_ex,inf);
for j = 2:5
 M = 10*2^(j-1);
 U = my_FD_nonhom_heat(a, b, T, N, M, g, f);
x = linspace(a,b,N+1)';
 error(j) = norm(U(:,M+1)-U_ex,inf);
dx = 2/(10*2^(j-1));
 fprintf([' %1.2e %20.3e %20.5f
'],
dx, error(j), log2(error(j-1)/error(j)))
end

Make sure that the names of your functions match. The above script can be uploaded from the course website. E-mail me your function. Print and submit the script of your function, the tables and the figures produced from running the test script

Bonus question: How would you speed up the computations?