ANALOGIES BETWEEN \mathbb{Z} AND $F[T]$: HOMEWORK 3

KEITH CONRAD

Quadratic residues.

1. Use quadratic reciprocity in $F_p[T]$. (All the moduli below are irreducible.)
 a) In $F_3[T]$, determine if $T^2 + T + 2$ is a square modulo $T^2 + T^3 + T^2 + 1$.
 b) In $F_5[T]$, determine if $T^3 + T^2 + T$ is a square modulo $3T^3 + T^3 + 4$.
 c) In $F_7[T]$, determine if $4T^2 + T + 5$ is a square modulo $T^3 + 6T^2 + 1$.

2. Does the congruence $x^2 + (T^3 + T)x + 2T \equiv 0 \mod T^4 + 2T + 2$ have a solution in $F_3[T]$? (The modulus is irreducible.)

3. Here is a typical kind of application of QR, in \mathbb{Z} and in $F_p[T]$ ($p \neq 2$).
 a) Use QR on \mathbb{Z} to show $(\frac{2}{p}) = 1 \iff p \equiv \pm 1, \pm 5 \mod 24$.
 b) Find a congruence on monic irreducible π in $F_3[T]$ which is equivalent to $(\frac{2T^3 + 3T + 1}{p}) = 1$.

4. For monic irreducible π in $F_7[T]$, is the condition $(\frac{T}{\pi}) = 1$ determined by a congruence on π?

5. Fix a prime $p \neq 2$. For relatively prime $F,G \in F_p[T]$, with $\deg G > 0$, write $G = a\pi_1 \cdots \pi_r$ (a lies in F_p and the irreducible π_i might be associates). Define the Jacobi symbol

 \[\left(\frac{F}{G} \right) := \left(\frac{F}{\pi_1} \right) \cdots \left(\frac{F}{\pi_r} \right). \]

 a) For $c \in F_p$, express $(\frac{c}{p})$ in terms of the usual Legendre symbol $(\frac{c}{p})$.
 b) Prove an $F_p[T]$-analogue of Jacobi reciprocity.

6. ($p = 2$, continued) Let π be irreducible in $F_2[T]$, of degree d, with roots $\alpha_1, \ldots, \alpha_d$ in some field containing F_2. Prove

 \[[f, \pi] = f(\alpha_1) + f(\alpha_2) + \cdots + f(\alpha_d). \]

 In particular,

 \[[T^m, \pi] = \alpha_1^m + \cdots + \alpha_d^m. \]

 Compute $[T, \pi]$ in terms of coefficients of π, if you did not do this on Homework 1.

7. (Jacobi symbols in $F_2[T]$) The symbol $[f, \pi]$ is additive in its first coordinate. Extend its meaning in the second coordinate “logarithmically” to any nonzero $g \in F_2[T]$: when $g = \pi_1 \cdots \pi_r$ (the π_i’s are not necessarily distinct), define

 \[[f, g] := [f, \pi_1] + [f, \pi_2] + \cdots + [f, \pi_r]. \]

 This is a sum, not a product. For example, $[f, 1] = 0$ and $[f, T^2 + T] = [f, T] + [f, T + 1]$. (The second example should not be confused with $[T^2 + T, \pi]$, which is 0.)

 a) Check $[f, g_1 g_2] = [f, g_1] + [f, g_2]$ for any nonzero g_1, g_2 in $F_2[T]$. In particular, $[f, g^2] = 0$.
 b) Compute $[f, T^3 + T^2 + T]$ and $[f, T^3 + T^2]$ for all f with degree less than 3.

8. The following are three versions of the classical quadratic reciprocity law.

 (1) (Euler) For any nonzero integer d and primes p, q not dividing $4d$,

 \[p \equiv q \mod 4d \Rightarrow \left(\frac{d}{p} \right) = \left(\frac{d}{q} \right), \quad p \equiv -q \mod 4d \Rightarrow \left(\frac{d}{p} \right) = (\text{sgn } d) \left(\frac{d}{q} \right), \]

 where $\text{sgn } d = \pm 1$ is the sign of d.
\begin{enumerate}
\item (Legendre/Gauss) For any distinct odd primes \(p\) and \(q\), \(\left(\frac{q}{p}\right) = (-1)^{(p-1)/2(q-1)/2(p,q)}\). Moreover, \(\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}\) and \(\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}\).

\item (Artin) For any nonzero integer \(d\), there is a group homomorphism \(f: (\mathbb{Z}/4d)^\times \to \{\pm 1\}\), where \(f(p \mod 4d) = \left(\frac{2}{p}\right)\) for any prime \(p\) not dividing \(4d\).

Prove the statements are equivalent. (At least prove the first two are equivalent. Showing (3) \(\Rightarrow\) (1) is trickier.) Since the second statement is the form of QR you are familiar with, it is of course against the rules to use this form of QR in your proof unless you are in a position to be assuming the second statement. All you can use about the Legendre symbol \(\left(\frac{q}{p}\right)\), to start off, is its basic definition and its multiplicativity in \(a\).

\item Is there an analogue of question 8 in the context of QR on \(\mathbb{F}_p[T]\), with \(p\) odd?

\item \((n\text{-th power reciprocity in } \mathbb{F}_p[T])\) Fix a positive integer \(n\) and a prime \(p \equiv 1 \mod n\). Since \(\mathbb{F}_p^\times\) is cyclic, there are \(n\) different \(n\)th roots of unity in \(\mathbb{F}_p^n\).

\begin{enumerate}
\item Let \(\pi\) be irreducible in \(\mathbb{F}_p[T]\). For \(f\) not divisible by \(\pi\), define \(\left(\frac{f}{\pi}\right)_n\) to be the \(n\)th root of unity \(\omega\) in \(\mathbb{F}_p^n\) such that
\[f^{(N\pi-1)/\pi} \equiv \omega \mod \pi.\]

Show there really is such an \(n\)th root of unity in \(\mathbb{F}_p^n\), and that \(\left(\frac{f^2}{\pi}\right)_n = \left(\frac{2}{\pi}\right)_n\left(\frac{\pi}{\pi}\right)_n\) for \(f\) and \(g\) not divisible by \(\pi\).

\item Compute \((\frac{\pi}{\pi})_3\) from \(\mathbb{F}_3[T]\).

\item For distinct monic irreducibles \(\pi_1\) and \(\pi_2\) in \(\mathbb{F}_p[T]\), express \(\left(\frac{\pi_1}{\pi_2}\right)_n\) in terms of \(\left(\frac{\pi_1}{\pi_2}\right)_n\). (The case \(n = 2\) is quadratic reciprocity.) Don’t forget that \(p \equiv 1 \mod n\).
\end{enumerate}

\item Let’s compare a certain operation on continued fractions in the classical and polynomial setting.

\begin{enumerate}
\item Let \(\alpha = [a_1,a_2,a_3,\ldots] \in F((1/T))\) be a standard infinite continued fraction: \(a_n \in F[T]^\times\) and \(\deg a_n \geq 1\) for \(n \geq 2\). What is the continued fraction for \(-\alpha\)? For \(c\alpha\), with \(c \in F^\times\)?

\item Let \(\alpha = [a_1,a_2,a_3,\ldots] \in \mathbb{R}\), with \(a_n \in \mathbb{Z}\) and \(a_n > 0\) for \(n \geq 2\). What is the continued fraction for \(-\alpha\)?
\end{enumerate}

\item Compute the first six terms in the continued fraction for \(\sqrt{T^4 + T^3}\) in \(\mathbb{Q}((1/T))\) and in \(\mathbb{F}_5((1/T))\). Then solve \(u^2 - (T^4 + T^3)u^2 = 1\) nontrivially in \(\mathbb{F}_5[T]\).

\item In \(\mathbb{F}_p((1/T))\), let \(\alpha = [0,T,T^p,T^{p^2},\ldots,T^p^n,\ldots]\). Show \(\alpha\) is the root of a monic polynomial in \(\mathbb{F}_p[T][X]\). (Hint: Compute \(\alpha^n\).) This is an example of an element which is algebraic over \(\mathbb{F}_p(T)\) whose continued fraction entries are known to be unbounded. Classically, it is expected that every real irrational number which is algebraic over \(\mathbb{Q}\) and nonquadratic has unbounded continued fraction entries, but this is not proved in any example.

\item Miscellaneous.

\begin{enumerate}
\item For nonzero \(g(T) = c_n T^n + c_{n-1} T^{n-1} + \cdots + c_1 T + c_0 \in F[T]\) \((c_j \in F, c_n \neq 0)\), define
\[g^* := \frac{g(T)}{T^{\deg g}} = c_n + \frac{c_{n-1}}{T} + \cdots + \frac{c_1}{T^{n-1}} + \frac{c_0}{T^n}.\]

In particular, \(e^* = e\) for \(e \in F^\times\) and \((T - 1)^* = 1 - 1/T\). Note that \(g^*\) is a polynomial in \(F[1/T]\).

\item If \(g\) is monic, how is this reflected in \(g^*\)?

\item Show \((g_1g_2)^* = g_1^*g_2^*\), but \(g \mapsto g^*\) is not additive. What is \(\deg(g^*)\)? (Remember, the degree in \(F(T)\) is understood to be defined relative to the parameter \(T\), not \(1/T\). Hmm, what’s so special about \(T^T\)?)

\item For any nonzero \(g \in F[T]\), show \(g^*\) is a unit in the ring \(F[1/T]/(1/T)^r\), \(r \geq 1\). In \(F[1/T]/(1/T)^5\), compute the multiplicative inverses of \((T^2 + T)^*\) and \((T^2 - 1)^*\).
\end{enumerate}
\end{enumerate}
15. Pythagorean triples are solutions to the equation $a^2 + b^2 = c^2$ in (positive) integers a, b, c. Either a or b is odd. Assuming without loss of generality that a is odd, then a classical result says that when $\gcd(a, b, c) = 1$,
\[a = m^2 - n^2, \quad b = 2mn, \quad c = m^2 + n^2 \]
for some relatively prime integers $m > n$ with $m \not\equiv n \mod 2$. (Conversely, this formula produces only relatively prime triples with a odd.)

Generalize a suitable proof of this classical result to describe all solutions to $f^2 + g^2 = h^2$ with $f, g, h \in F[T]$, $\gcd(f, g, h) = 1$, and at least one of $f, g,$ and b nonconstant. Of course (why?), here we suppose F does not have characteristic 2. When F does have characteristic 2, describe all solutions to $f^2 + fg + g^2 = h^2$.

16. (Lucas). Let a, b be nonnegative integers, and p be a prime.

a) When $0 \leq n < p^k$, prove $a \equiv b \mod p^k$ implies $\left(a\right)_n \equiv \left(b\right)_n \mod p$. In particular, $\left(p^{-1}\right)_n \equiv (-1)^n \mod p$ when $n < p$. (Hint: $(1 + T)^{p^k} = (1 + T)^n (1 + T^p)^n$ in $F_p[T]$.)

b) Write a and b in base p:

\[a = a_0 + a_1 p + \cdots + a_d p^d, \quad b = b_0 + b_1 p + \cdots + b_d p^d, \]
where $0 \leq a_i, b_i \leq p - 1$. (Some high order digits may be 0 to give the expansions equal length.)

Prove that $a \equiv b \mod p$ if and only if $a_i \equiv b_i \mod p$ for each i.

The last choice needs $-1 \not\equiv 1 \mod p$ (why?).

a) Give a formula for T in terms of each of the following rational functions U: $T + 1$, $1/T$, $1/(T + 1)$, and $(T - 1)/(T + 1)$ (when $-1 \not\equiv 1 \mod p$).

b) When $U = T^2/(T + 1)$, prove $F(T)$ is a proper subfield of $F(U)$.

c) Prove $F[T] = F[U] \iff U = aT + b$, where $a \in F^\times$ and $b \in F$. Prove $F(T) = F(U) \iff U = (aT + b)/(cT + d)$ where $a, b, c, d \in F$ with $ad - bc \neq 0$.

17. By a change of variables, we can write $\left(\frac{\chi}{m}\right) \equiv \frac{X(X - 1) - (X - n + 1)}{2} \mod p$ for all integers m. Prove $\left(\frac{\chi}{m}\right) \in Z$ for all integers m. Is part a true when a or b is allowed to be negative?

As an example, let $F = F_5$. Then $f = 2T^2 + 1$ is not a square in $F_5((1/T))$, so f has an imaginary square root with respect to T. However, taking $\overline{T} = 1/T$, we have $F_5(T) = F_5(\overline{T})$ and $f = (\overline{T}^2 + 2)/\overline{T}^2$, so f has a real square root with respect to \overline{T}. Compute the first few terms in the Laurent expansion of a square root of f in $F_5((1/\overline{T}))$.

As an example, let $F = F_3$. Then $f = 2T^2 + 1$ is not a square in $F_3((1/T))$, so f has an imaginary square root with respect to T. However, taking $\overline{T} = 1/T$, we have $F_3(T) = F_3(\overline{T})$ and $f = (\overline{T}^2 + 2)/\overline{T}^2$, so f has a real square root with respect to \overline{T}. Compute the first few terms in the Laurent expansion of a square root of f in $F_3((1/\overline{T}))$.

The notion of “real” versus “imaginary” square roots in the context of $F(T)$, unlike the context of Q, is not completely rigid, since it depends on the choice of U to define the field $F(T) = F(U)$. There are no such choices to be made in the case of the field Q.