Due: Thursday, August 3 at the beginning of class

Problems:

(1) (An application of Dirichlet’s and Kornblum’s theorem)

a) Let $m | n$ in \mathbb{Z} and $M | N$ in $\mathbb{F}_p[T]$. (Here m, n, M, N are all nonzero.) Use the Chinese Remainder Theorem to show the reduction maps $(\mathbb{Z}/n)^\times \to (\mathbb{Z}/m)^\times$ and $(\mathbb{F}_p[T]/N)^\times \to (\mathbb{F}_p[T]/M)^\times$ are surjective.

b) Let m be a positive integer, a be relatively prime to m, and S be a finite set of primes. Use Dirichlet’s theorem and part a) to prove that $\gcd(\{ p - a : p \equiv a \mod m, p \not\in S \}) = m$

unless m is odd and a is odd, in which case the gcd is $2m$. Try to give a proof that works when S is a possibly infinite set of primes, with a suitable constraint on S.

c) Let M be monic in $\mathbb{F}_p[T]$, A be relatively prime to M, and S be a finite set of monic irreducible polynomials. Use Kornblum’s theorem and part a) to prove that $\gcd(\{ \pi - A : \pi \equiv A \mod M, \pi \not\in S \}) = M$

unless $p = 2$ and M is relatively prime to either T or $T + 1$ (or both), and then give a formula for the gcd in these cases as well. As in part b), your proof should work when S is infinite with a suitable constraint.

(2) For a prime p, let $N_p = \# \{(x, y) \in \mathbb{Z}/p \times \mathbb{Z}/p : y^2 = x^3 - x \}$. Compute N_p for $2 \leq p \leq 29$. Make some good observations, and try to prove some of them.

(What, you may ask, does this have to do with L-functions? Wait to find out in the solution set, or think carefully about your data and discover the connection for yourself.)

(3) Let M be a nonzero polynomial in $\mathbb{F}_p[T]$, of degree $d > 1$. Let χ be a nontrivial Dirichlet character mod M. We know from class that $L(s, \chi)$ is a polynomial in p^{-s} of degree $< d$, say $L(s, \chi) = \sum_{0 \leq n \leq d-1} a_n p^{-ns}$.

As noted in class, this equation extends the definition of $L(s, \chi)$ to all real s. In particular, $L(0, \chi) = \sum_{n \leq d-1} a_n$. Recalling how the coefficients a_n are determined, we find

$$\sum_{n \leq d-1} a_n = \sum_{n \leq d-1} \sum_{\deg f = n} \chi(f) = \sum_{\deg f < d} \chi(f) = 0,$$
since the sum of a nontrivial character over a group is 0, the polynomials of degree less than \(d = \deg M \) (which are relatively prime to \(M \)) represent all the units of the group \((\mathbb{F}_p[T]/M)^\times\), and \(\chi(f) = 0 \) if \(f \) is a nonunit mod \(M \). Thus \(L(0, \chi) = 0 \).

Alas, this is incorrect. We’ve seen examples in class where \(L(s, \chi) = 1 \) for all \(s \), so in particular \(L(0, \chi) = 1 \). Where is the error in the above argument? (Do not give examples where the argument fails. Pinpoint the actual error in the “proof”.)

(4) Let \(p \) be an odd prime and \(\omega \) a fixed nontrivial \(p \)th root of unity in \(\mathbb{C} \), e.g., \(\cos(2\pi/p) + i\sin(2\pi/p) \). For a monic polynomial

\[
f(T) = T^n + c_{n-1}T^{n-1} + \cdots + c_0
\]

in \(\mathbb{F}_p[T] \), define \(\chi(f) = (\frac{\omega}{p})^{c_n-1} \), where \((\frac{\cdot}{p}) \) is the Legendre symbol. (It is okay to raise \(\omega \) to an exponent taken from \(\mathbb{F}_p = \mathbb{Z}/p \) since the exponent only matters modulo \(p \) anyway.) In particular, \(\chi(1) = 1 \) and \(\chi(T + c) = (\frac{\omega}{p})^{c} \).

a) Show \(\chi(fg) = \chi(f)\chi(g) \) for any two monic \(f \) and \(g \) in \(\mathbb{F}_p[T] \).

b) Prove \(\chi \) is not periodic, i.e., there is no polynomial \(M(T) \in \mathbb{F}_p[T] \) such that \(\chi(f) = \chi(g) \) when \(f \) and \(g \) are monic with \(f \equiv g \mod M \).

c) For \(s > 1 \), define

\[
L(s, \chi) = \sum_{\text{monic } f} \frac{\chi(f)}{Nf^s}.
\]

Show that \(L(s, \chi) = 1 + a_1/p^s \), where

\[
a_1 = \sum_{j=1}^{p-1} \left(\frac{j}{p}\right) \omega^j.
\]

Warning: Since \(\chi \) is not a Dirichlet character for \(\mathbb{F}_p[T] \), be careful about appealing to results from class which were only proved for \(L \)-functions of Dirichlet characters.

(5) (An \(L \)-function for a quadratic modulus)

Let \(p \) be an odd prime and fix a nontrivial \(p \)th root of unity \(\omega \). Define a function \(\chi: (\mathbb{F}_p[T]/T^2)^\times \to \mathbb{C}^\times \) by

\[
\chi(c_0 + c_1T + \cdots + c_nT^n) = \left(\frac{c_0}{p}\right) \omega^{c_n/c_0}.
\]

(The mod \(p \) division in the exponent of \(\omega \) makes sense since \(c_0 \neq 0 \) in \(\mathbb{F}_p \) for a polynomial that is a unit mod \(T^2 \).) Note \(\chi \) is defined for all units mod \(T^2 \), not just for the monic polynomials which are units mod \(T^2 \).

a) Show \(\chi(fg) = \chi(f)\chi(g) \) for any two polynomials \(f \) and \(g \) that are units mod \(T^2 \).

b) Extend \(\chi \) to the nonunits mod \(T^2 \) by setting it 0 there, and define the \(L \)-function of \(\chi \), for \(s > 1 \), by

\[
L(s, \chi) = \sum_{\text{monic } f} \frac{\chi(f)}{Nf^s}.
\]
Show \(L(s, \chi) = 1 + a_1/p^s \), where
\[
a_1 = \sum_{j=1}^{p-1} \left(\frac{j}{p} \right) \omega^j.
\]

Comparing with the previous exercise, we see that the same \(L \)-function arises from a Dirichlet character mod \(T^2 \) and from a non-Dirichlet character.

In case you haven’t seen a sum like \(a_1 \) before, it is called a Gauss sum. This Gauss sum can be used to give a proof of quadratic reciprocity which is less roundabout than the proof on the PROMYS sets, and it also arises in the more advanced study of the classical Dirichlet \(L \)-function \(L(s, (\frac{\cdot}{p})) \).

(6) (An \(L \)-function for a cubic modulus)

a) Show 2 and \(T + 1 \) generate the units of \(\mathbb{F}_3[T]/(T^3 + T) \).

b) Define a character \(\chi \) by \(\chi(2) = -1 \) and \(\chi(T + 1) = -1 \), extended by multiplicativity to other units. Compute \(L(s, \chi) \) and the associated polynomial \(P_\chi(x) \).

c) Same as part b), but let \(\chi \) be determined by \(\chi(2) = -1 \) and \(\chi(T + 1) = i \).

(7) (An \(L \)-function for a quartic modulus)

a) Show \(T^4 + T + 2 \) is irreducible in \(\mathbb{F}_3[T] \).

b) Show \(T \) generates the units of \(\mathbb{F}_3[T]/(T^4 + T + 2) \).

c) Define a character mod \(T^4 + T + 2 \) by \(\chi(T) = i \). Compute \(L(s, \chi) \) as a polynomial in \(1/3^s \). (As a check on your work, the final answer should be a polynomial \(P_\chi(x) \) which has a root at \(x = 1 \), and the other two roots have the same absolute value.)

(8) Fix nonzero \(M \in \mathbb{F}_p[T] \) and integers \(a \) and \(b \). For \((A, M) = 1 \), show there are infinitely many monic irreducible \(\pi \) such that both \(\pi \equiv A \mod M \) and \(\deg \pi \equiv a \mod b \). Compute a density for such \(\pi \). (Hint: In the spirit of the proof of Dirichlet’s theorem, you want to get a good formula for the sum
\[
\sum_{\substack{\pi \equiv A \mod M \\ \deg \pi \equiv a \mod b}} \frac{1}{N\pi^s},
\]
where the sum is taken over monic irreducible \(\pi \) satisfying the indicated conditions. For \(b \)th roots of unity \(\omega \), consider the characters \(\psi_\chi, \omega(f) = \omega^{\deg f} \chi(f) \) and the corresponding \(L \)-functions. Note
\[
\frac{1}{b} \sum_{\omega^d=1} \omega^{d-a} = \begin{cases} 1, & \text{if } d \equiv a \mod b, \\ 0, & \text{if } d \not\equiv a \mod b, \end{cases}
\]
so the condition of being congruent to \(a \mod b \) can be expressed via a sum of \(b \)th roots of unity.)