A 2-PARAMETER NONABELIAN GROUP

KEITH CONRAD

1. Introduction

Set

\[G = \left\{ \begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix} : x > 0, y \in \mathbb{R} \right\}, \]

which is a group under matrix multiplication:

\[
\begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix} \begin{pmatrix} u & v \\ 0 & 1/u \end{pmatrix} = \begin{pmatrix} xu & xv + y/u \\ 0 & 1/xu \end{pmatrix}, \quad \begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix}^{-1} = \begin{pmatrix} 1/x & -y \\ 0 & x \end{pmatrix}.
\]

We geometrically represent \(\begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix} \) as the point \((x, y)\) in the plane. So \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) corresponds to \((1, 0)\) and we plot \(g = \begin{pmatrix} 2 & 2 \\ 0 & 1/2 \end{pmatrix}\), \(h = \begin{pmatrix} 3 & 1 \\ 0 & 1/3 \end{pmatrix}\), and several powers and products in Figure 1. Note \(gh \neq hg\).

![Figure 1. Powers and products of \(g = \begin{pmatrix} 2 & 2 \\ 0 & 1/2 \end{pmatrix}\) and \(h = \begin{pmatrix} 3 & 1 \\ 0 & 1/3 \end{pmatrix}\) in \(G\).](image-url)
In G, there are two “natural” subgroups

$$H = \left\{ \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} : x > 0 \right\}, \quad K = \left\{ \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} : y \in \mathbb{R} \right\}. $$

They are pictured below in Figure 2 as the points $(x, 0)$ for H and the points $(1, y)$ for K.

![Figure 2. The subgroups H and K.]

In Section 2 we will make pictures of conjugacy classes and conjugate subgroups, and in Section 3 we will see pictures of the left and right cosets of H and K.

2. CONJUGACY CLASSES AND CONJUGATE SUBGROUPS

The conjugate of $\begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix}$ by $\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix}$ is

$$\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} \begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1/b \end{pmatrix}^{-1} = \begin{pmatrix} x & ab(1/x - x) + a^2 y \\ 0 & 1/x \end{pmatrix}.$$

Equation (2.1) tells us **conjugate elements of G have the same same upper left entry**. Therefore in our picture of G, conjugate elements of G have the same first coordinate: they must lie on the same vertical line. We can use the formula (2.1) to compute a conjugacy class: fix x and y, and let a and b vary on the right side of (2.1). Here are the results.

- The conjugacy class of the identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is itself. See the green dot in Figure 3.
- Conjugates of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ are found by setting $x = y = 1$ on the right side of (2.1). We get $\begin{pmatrix} 1 & a^2 \\ 0 & 1 \end{pmatrix}$ for all $a > 0$, which in Figure 3 is the red half-line through $(1, 1)$ above the x-axis.
- Conjugates of $\begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$ are $\begin{pmatrix} 1 & -a^2 \\ 0 & -1 \end{pmatrix}$ for all $a > 0$, which in Figure 3 is the blue half-line through $(1, -1)$ below the x-axis.
- We now determine the conjugacy class of $\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}$, where $x > 0$ and $x \neq 1$. A conjugate matrix has the form $\begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix}$ for some y. We will now show, for $x > 0$ and $x \neq 1$, that the
A 2-PARAMETER NONABELIAN GROUP

matrix \(\begin{pmatrix} x & y \\ 0 & 1/x \end{pmatrix} \) for all \(y \in \mathbb{R} \) is conjugate to \(\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} \). This would mean that in Figure 3, the conjugacy class of \(\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} \) for \(x > 0 \) with \(x \neq 1 \) is represented by the whole vertical line through \((x, 0) \).

To prove our description of the conjugacy class of \(\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} \) is correct, this conjugacy class includes the matrices
\[
\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} x & b(x-1/x) \\ 0 & 1/x \end{pmatrix},
\]
with \(b \) running through all real numbers. Here \(b \) is variable and \(x \) is fixed. Since \(x > 0 \) and \(x \neq 1 \) we have \(x - 1/x \neq 0 \), so the upper right entry of the conjugate matrix runs through all real numbers as \(b \) varies.

See the orange and purple vertical lines in Figure 3 corresponding to \(x = 3 \) and \(x = 5 \).

\[\text{Figure 3. Conjugacy classes of } \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 1/3 \end{pmatrix}, \text{ and } \begin{pmatrix} 5 & 0 \\ 0 & 1/5 \end{pmatrix}.\]

Turning from conjugacy classes of elements to conjugate subgroups, we will compute the subgroups of \(G \) that are conjugate to \(H = \{ (x, 0) : x > 0 \} \) and to \(K = \{ (y, 0) : y \in \mathbb{R} \} \). The answers in these two cases will be very different.

For \(a > 0 \) and \(b \in \mathbb{R} \), we have by equation (2.1) with \(y = 0 \) that
\[
\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} (x, 0, 0, 1/x) \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix}^{-1} = \begin{pmatrix} x & ab(1/x-x) \\ 0 & 1/x \end{pmatrix},
\]
so the subgroup conjugate to \(H \) by \(\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} \) is
\[
(2.2) \quad \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} H \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix}^{-1} = \left\{ \begin{pmatrix} x & ab(1/x-x) \\ 0 & 1/x \end{pmatrix} : x > 0 \right\}.
\]

On the right side of (2.2), \(a \) and \(b \) are fixed and \(x \) varies. Since \(a \) and \(b \) occur on the right side of (2.2) only through \(ab \), conjugating \(H \) by matrices in \(G \) whose top two entries have the same product leads to the same conjugate subgroup to \(H \). Thus for \(b > 0 \)
\[
\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} H \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix}^{-1} = \begin{pmatrix} ab & 1 \\ 0 & 1/ab \end{pmatrix} H \begin{pmatrix} ab & 1 \\ 0 & 1/ab \end{pmatrix}^{-1}
\]
since $a \cdot b = ab \cdot 1$, and for $b < 0$

$$
\begin{pmatrix}
a & b \\
0 & 1/a
\end{pmatrix} H \begin{pmatrix}
a & b \\
0 & 1/a
\end{pmatrix}^{-1} = \begin{pmatrix} a|b| & -1 \\
0 & 1/a|b|
\end{pmatrix} H \begin{pmatrix} a|b| & -1 \\
0 & 1/a|b|
\end{pmatrix}^{-1}
$$

since $a \cdot b = a|b| \cdot (-1)$. Thus conjugating H by an element of G that is not in H (meaning $b \neq 0$)

has the same effect as conjugating H by a matrix of the form $(t \ 1/t \ 0 \ 1)$ or $(t^{-1} \ 0 \ 1/t \ 0)$, where $t > 0$.

As an example,

$$
\begin{pmatrix} 1 & 1 \\
0 & 1
\end{pmatrix} H \begin{pmatrix} 1 & 1 \\
0 & 1
\end{pmatrix}^{-1} = \left\{ \begin{pmatrix} x & 1/x - x \\
0 & 1/x
\end{pmatrix} : x > 0 \right\}.
$$

Figure 4. Conjugating H by $(1 \ 1 \ 0 \ 1)$, $(1^{-1} \ 0 \ 1)$, $(2 \ 1/2 \ 0 \ 1)$, $(2^{-1} \ 0 \ 1/2 \ 0)$, $(1/4 \ 1 \ 0 \ 4)$, and $(1/4^{-1} \ 0 \ 4)$.

In Figure 4 this conjugate subgroup is represented by the set of all $(x, 1/x - x)$ with $x > 0$, which is the graph of $y = 1/x - x$ for $x > 0$ (in red). The conjugate subgroup $(2 \ 1/2 \ 0 \ 1)^{-1} H (2 \ 1/2 \ 0 \ 1)$ is all $(x \ 2(1/x - x))$, which in Figure 4 is represented by the graph of $y = 2(1/x - x)$ for $x > 0$ (in green).

More generally, from (2.2) the subgroup conjugate to H by $(a \ 1/a)$ is represented as the graph of $y = a(1/x - x)$ for $x > 0$ and the subgroup conjugate to H by $(a^{-1} \ 0 \ 1/a)$ is represented as the graph of $y = -a(1/x - x)$ for $x > 0$. These curves are pictured in Figure 4 for different a.

What subgroups in G are conjugate to K? Since $(a \ b \ 0 \ 1)(\ 1/y \ 0 \ 1)^{-1} = (1 \ a^2 y \ 0 \ 1)$ we get

$$
\begin{pmatrix} a & b \\
0 & 1/a
\end{pmatrix} K \begin{pmatrix} a & b \\
0 & 1/a
\end{pmatrix}^{-1} = \left\{ \begin{pmatrix} 1 \ a^2 y \ 1 \\
0 \ 1
\end{pmatrix} : y \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 \ t \\
0 \ 1
\end{pmatrix} : t \in \mathbb{R} \right\} = K,
$$
so the only subgroup of G conjugate to K is K. See Figure 5.

![Figure 5. The only conjugate subgroup of K is K.](image)

3. Cosets

We will draw pictures for the left and right cosets of the subgroups H and K. For $g = \left(\begin{array}{cc} a & b \\ 0 & 1/a \end{array} \right)$, a typical element in gH is

$$
\left(\begin{array}{cc} a & b \\ 0 & 1/a \end{array} \right) \left(\begin{array}{cc} x & 0 \\ 0 & 1/x \end{array} \right) = \left(\begin{array}{cc} ax & b/x \\ 0 & 1/ax \end{array} \right)
$$

where $x > 0$. Letting x run over all positive numbers, by a change of variables

$$
gH = \left\{ \left(\begin{array}{cc} ax & b/x \\ 0 & 1/ax \end{array} \right) : x > 0 \right\} = \left\{ \left(\begin{array}{cc} t & ab/t \\ 0 & 1/t \end{array} \right) : t > 0 \right\}
$$

which is pictured in Figure 6 as the graph of $y = ab/x$ for $x > 0$: the branch of a hyperbola passing through (a, b). The left H-cosets are branches of hyperbolas that fill up G without overlapping.

A typical element in the right coset Hg is

$$
\left(\begin{array}{cc} x & 0 \\ 0 & 1/x \end{array} \right) \left(\begin{array}{cc} a & b \\ 0 & 1/a \end{array} \right) = \left(\begin{array}{cc} ax & bx \\ 0 & 1/ax \end{array} \right)
$$
Figure 6. The left cosets of H: hyperbolas $xy = \text{constant}$, $x > 0$.

for $x > 0$. Letting x run over all positive numbers,

$$Hg = \left\{ \begin{pmatrix} ax & bx \\ 0 & 1/ax \end{pmatrix} : x > 0 \right\} = \left\{ \begin{pmatrix} t & (b/a)t \\ 0 & 1/t \end{pmatrix} : t > 0 \right\},$$

which is pictured in Figure 7 as the graph of the ray $y = (b/a)x$ coming out of the origin and passing through (a, b). The right H-cosets are rays that fill up G without overlapping.

Turning to the left and right cosets of K, a typical element in gK is

$$\begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ay + b \\ 0 & 1/a \end{pmatrix}.$$

As y runs over all real numbers, $ay + b$ runs over all real numbers, so

$$gK = \left\{ \begin{pmatrix} a & y \\ 0 & 1/a \end{pmatrix} : y \in \mathbb{R} \right\},$$

which is pictured as the vertical line $x = a$. Similarly, a typical element of the right coset Kg is

$$\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} = \begin{pmatrix} a & b + y/a \\ 0 & 1/a \end{pmatrix},$$

and as y runs over \mathbb{R} the numbers $b + y/a$ run over \mathbb{R}, so $Kg = gK$ for each $g \in G$. The left K-cosets and right K-cosets are each the collection of all vertical lines, which fill up G without overlaps. See Figure 8.
Figure 7. The right cosets of H: rays coming out of $(0,0)$.

Figure 8. The left and right cosets of K: vertical lines.