A q-ANALOGUE OF MAHLER EXPANSIONS I

KEITH CONRAD

Abstract. We examine a q-analogue of Mahler expansions for continuous functions in p-adic analysis, replacing binomial coefficient polynomials $\binom{x}{n}$ with a q-analogue $\binom{x}{n}_q$ for a p-adic variable q with $|q - 1|_p < 1$. Mahler expansions are recovered at $q = 1$ and we consider the p-adic q-Gamma function $\Gamma_{p,q}$ of Koblitz relative to its q-Mahler expansion.

1. Introduction

Let \mathbb{Z}_p be the p-adic integers, \mathbb{Q}_p the p-adic rationals, and K a field extension of \mathbb{Q}_p which is complete with respect to a nonarchimedean absolute value $|\cdot|_p$, normalized by $|p|_p = 1/p$.

About forty years ago, Mahler introduced in [18] an expansion for continuous functions from \mathbb{Z}_p to K using special polynomials. Specifically, he observed that the nth binomial coefficient polynomial

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$

sends \mathbb{Z}_p to \mathbb{Z}_p (it sends \mathbb{Z} to $\mathbb{Z} \subset \mathbb{Z}_p$, then use continuity), so $|\binom{x}{n}_p| \leq 1$ for all $x \in \mathbb{Z}_p$. Therefore for any sequence $c_n \in K$ with $\lim_{n \to \infty} c_n = 0$, the series

$$f(x) = \sum_{n \geq 0} c_n \binom{x}{n}$$

defines a continuous function $\mathbb{Z}_p \to K$. Mahler proved every continuous function from \mathbb{Z}_p to K arises uniquely in this way, with

$$c_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} f(k), \quad \sup_{x \in \mathbb{Z}_p} |f(x)|_p = \max_{n \geq 0} |c_n|_p.$$

The c_n are called the Mahler coefficients of f and the series $\sum c_n \binom{x}{n}$ is called the Mahler expansion of f.

In this paper a q-analogue of the Mahler expansion is studied, where q is a p-adic variable. To set up the framework for our ideas, first we recall the philosophy of q-analogues over \mathbb{R} and \mathbb{C}. For a complex number q other than 1, define the q-analogue of a positive integer n to be

$$(n)_q = \frac{q^n - 1}{q - 1} = 1 + q + \cdots + q^{n-1}.$$

As $q \to 1$, $(n)_q \to n$, and this is the hallmark of a q-analogue: the limit as $q \to 1$ recovers the classical object. There are q-analogues of most functions in classical analysis [9]. For

1991 Mathematics Subject Classification. 05A30, 26E30, 46S10, 11S80.

Key words and phrases. q-analogue, p-adic functions, Mahler expansions.
example, the geometric series
\[
(1 - z)^{-a} = \sum_{n \geq 0} \frac{a(a + 1) \cdots (a + n - 1)}{n!} z^n
\]
for $|z| < 1$ and $a \in \mathbb{C}$ has the q-anologue
\[
1 + \frac{q^a - 1}{q - 1} z + \frac{(q^a - 1)(q^{a+1} - 1)}{(q - 1)(q^2 - 1)} z^2 + \cdots = \prod_{n \geq 0} \frac{1 - q^{a+n} z}{1 - q^n z},
\]
where the infinite product converges for $|q| < 1$. The analytic treatment of q-series in \(\mathbb{C} \) usually assumes $|q| < 1$ or $0 < q < 1$. However, many results make sense in a formal way, allowing q to be viewed as an indeterminate. The study of q-analogues has connections with a number of areas of mathematics, such as partitions, modular functions, and quantum groups.

The Mahler expansion in p-adic analysis uses binomial coefficient polynomials $\binom{x}{n}$, $x \in \mathbb{Z}_p$. For $q \in K$ with $|q - 1|_p < 1$ (the p-adic substitute for the condition $|q| < 1$ in \mathbb{C}), we will use q-analogues $\binom{x}{n}_q$. These are exponential functions of $x \in \mathbb{Z}_p$ if q is not a root of unity, and are locally polynomials in x if q is a root of unity. In particular, $\binom{x}{1}_q = x$. The q-anologue of Mahler’s theorem is

Theorem. For a complete extension field K/\mathbb{Q}_p and $q \in K$ with $|q - 1|_p < 1$, every continuous function $f : \mathbb{Z}_p \to K$ has a unique expansion
\[
f(x) = \sum_{n \geq 0} c_{n,q} \binom{x}{n}_q
\]
where $c_{n,q} \in K$ and $c_{n,q} \to 0$ as $n \to \infty$. Furthermore,
\[
c_{n,q} = \sum_{k=0}^{n} \binom{n}{k}_q (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k), \quad \sup_{x \in \mathbb{Z}_p} |f(x)|_p = \max_{n \geq 0} |c_{n,q}|_p.
\]

About twenty years ago, van Hamme [23] proved the p-adic analogue of a result of F. H. Jackson on real q-series, thereby giving explicit polynomial approximations for continuous functions on certain compact-open subsets V_q of \mathbb{Z}_p. The subset and the approximating polynomials depend on a parameter $q \in \mathbb{Z}_p^\times$ which can not be a root of unity. A. Verdoort has continued this work. The point of view of van Hamme and Verdoort is largely compatible with the one presented in Section 3 after a change of variables, although our approach, unlike theirs, permits a passage to the limit as $q \to 1$ to recover Mahler’s theorem at $q = 1$.

The structure of the paper is as follows. In Section 2 we review some properties of q-analogues, where q will be treated mostly as an indeterminate. In Section 3 we let q be a p-adic variable and discuss the q-anologue of Mahler’s theorem. Four proofs are given, having individual advantages. Because this paper may be of interest to people who work in p-adic analysis but not in q-series, and vice versa, we give extra details in Sections 2 and 3 for results that are well-known to those familiar with one of these areas but not the other.

In Section 4 we discuss properties of q-Mahler expansions. One aspect which is not apparent in the classical case $q = 1$ is the role of the p-adic logarithm in classifying differentiability in terms of q-Mahler expansions. In Section 5 we discuss the q-Mahler expansion of the p-adic q-Gamma function of Koblitz.
Here is a brief list of notation.

\(\mathbb{N} \) is the set of natural numbers \(\{0, 1, 2, \ldots \} \).

\(\mathbb{Z}_p \) is the ring of \(p \)-adic integers.

\(\mathbb{Q}_p \) is the field of \(p \)-adic numbers.

\(\zeta \) denotes a root of unity.

\(\Phi_n \) is the \(n \)th cyclotomic polynomial.

For a function \(f \) on \(\mathbb{Z}_p \), \((E^y f)(x) = f(x+y) \) is the shift by \(y \). In particular, \((Ef)(x) = f(x+1) \).

Let \((K, | \cdot |) \) be a complete extension field of \(\mathbb{Q}_p \) with \(|p| = 1/p \). The continuous functions from \(\mathbb{Z}_p \) to \(K \) will be denoted \(C(\mathbb{Z}_p, K) \) and topologized by the sup-norm \(|f|_{\sup} := \sup_{x \in \mathbb{Z}_p} |f(x)| \). (We only consider \(p \)-adic absolute values, so we write \(| \cdot | \) rather than \(| \cdot |_p \).)

A function \(\mathbb{Z}_p \to K \) is called analytic if it is given by a single power series that converges on \(\mathbb{Z}_p \). It is called locally analytic if it is locally expressible by a power series around each point of \(\mathbb{Z}_p \).

I’d like to thank MSRI for its hospitality, where part of this was written, and D. Goss, S. Milne, and G.-C. Rota for their advice and assistance.

2. A Review of \(q \)-Formalism

Here we recall the features of \(q \)-analogues that are needed for our purposes, generally insofar as \(q \) can be treated as an indeterminate. Some remarks will be made about specializing \(q \), especially at roots of unity. The focus will be on properties of \(q \)-binomial coefficients and \(q \)-difference operators.

For an integer \(n \) and an indeterminate \(q \), the \(q \)-analogue of \(n \) is

\[
(n)_q := \frac{q^n - 1}{q - 1}.
\]

For example, \((0)_q = 0, (1)_q = 1, (2)_q = 1 + q, (-1)_q = -1/q \).

When \(n \geq 1 \), \((n)_q = 1 + q + \cdots + q^{n-1}\) is a polynomial in \(\mathbb{Z}[q] \).

For any integers \(m \) and \(n \),

\[(2.1) \quad (-n)_q = -\frac{1}{q^n} (n)_q, \quad (n)_{1/q} = \frac{1}{q^{n-1}} (n)_q, \quad (mn)_q = (m)_q (n)_q (q^n) .\]

Specializing \(q = 1 \), \((n)_q \) becomes \(n \).

The \(q \)-factorials are

\[
(n)_q! := \begin{cases}
1, & n = 0; \\
(n)_q (n-1)_q \cdots (1)_q, & n \geq 1.
\end{cases}
\]

For example, \((1)_q! = 1, (2)_q! = 1 + q, (3)_q! = 1 + 2q + 2q^2 + q^3 \), and

\[(2.2) \quad (n)_{1/q}! = \frac{1}{q^{n(n-1)/2}} (n)_q! .\]
The q-binomial coefficient for nonnegative integers m and n with $m \geq n$ is
\[
\binom{m}{n}_q := \frac{(m)_q!}{(n)_q!(m-n)_q!} = \frac{(m)_q(m-1)_q \cdots (m-n+1)_q}{(n)_q!} = \frac{(q^n-1)(q^{n-1}-1) \cdots (q^{m-n+1}-1)}{(q^n-1)(q^{n-1}-1) \cdots (q-1)}.
\]
We use the second or third expression to extend the definition of $\binom{m}{n}_q$ to any integer m.
These functions go back to Gauss [10, p. 16], so they are also called Gaussian coefficients.

The first few q-binomial coefficients are
\[
\binom{m}{0}_q = 1, \quad \binom{m}{1}_q = (m)_q = \frac{q^m - 1}{q - 1}, \quad \binom{m}{2}_q = \frac{(q^m - 1)(q^{m-1} - 1)}{(q^2 - 1)(q - 1)}.
\]
For $m \geq n$, $\binom{m}{n}_q = \binom{m-n}{n}_q$, and as a rational function in q, $\binom{m}{n}_q = 0$ precisely when $0 \leq m < n$. The q-binomial coefficient may vanish in other cases numerically, e.g., $(\frac{2}{3})_q = (1 + q^2)(1 + q + q^2)$, so $\binom{2}{3}_q = 0$.

The following result is essentially due to Gauss [10, p. 17].

Theorem 2.1. For fixed integers $m \geq n \geq 0$, $\binom{m}{n}_q \in \mathbb{Z}[q]$ with degree $n(m-n)$.

Proof. The degree follows from the definition, once we know $\binom{m}{n}_q$ is a polynomial in q.

We give Gauss’ proof that $\binom{m}{n}_q \in \mathbb{Z}[q]$ and then an alternate proof that seems to be new.

The Pascal’s triangle recursion for binomial coefficients generalizes (for all m in \mathbb{Z}) to
\[
\binom{m}{n}_q = \binom{m-1}{n-1}_q + q^n \binom{m-1}{n}_q = q^{m-n} \binom{m-1}{n-1}_q + \binom{m-1}{n}_q
\]
(when $m \geq n$, replace n by $m - n$ to obtain either recursion from the other), and iterating the second recursion gives
\[
\binom{m+n+1}{n+1}_q = q^m \binom{m+n}{n}_q + \binom{m+n}{n+1}_q = \sum_{k=0}^{m} q^k \binom{k+n}{n}_q.
\]
So $\binom{m}{n}_q \in \mathbb{Z}[q]$ by induction on n (and actually all the coefficients are nonnegative).

As an alternate proof, the irreducible factors of the rational function $\binom{m}{n}_q$ are cyclotomic polynomials. The multiplicity of the jth cyclotomic polynomial $\Phi_j(q)$ as a factor of $(n)_q!$ is $[n/j]$, so its multiplicity as a factor of $\binom{m}{n}_q$ is $[m/j] - [n/j] - [(m-n)/j]$, which is 0 or 1. This shows for $m \geq n$ not only that $\binom{m}{n}_q$ is a polynomial in q, but that its irreducible factors are all simple factors and $\Phi_j(q)$ is a factor precisely when the units’ digit of m in base j is less than the units’ digit of n in base j. I thank Ira Gessel for a simplification to the original form of this alternate proof.

Further identities for all $m \in \mathbb{Z}$ (and $k \geq j \geq 0$) are
\[
\binom{m}{n}_q = \frac{(m)_q(m-1)_q \cdots (m-n+1)_q}{(n)_q(n-1)_q \cdots (n-m+1)_q}, \quad \binom{m}{n}_{1/q} = \frac{1}{q^{n(m-n)}} \binom{m}{n}_q, \quad \binom{m}{k}_{q^{j}} = \binom{m}{k}_q \binom{k}{j}_q = \binom{m}{j}_q \binom{m-j}{k-j}_q.
\]
\[\binom{-m}{n} q = (-1)^n q^{-n(n-1)/2} \binom{m+n-1}{n} q = (-1)^n \binom{m+n-1}{n}^{1/q}. \]

For example, \(\binom{-1}{n} q = (-1)^n q^{-n(n+1)/2} \). By (2.5), for \(m > 0 \), \(\binom{m}{n} q \) is a polynomial in \(1/q \) with degree \(n(n-1)/2 + mn \) whose coefficients are nonzero integers with sign \((-1)^n \).

The next result is a \(q \)-analogue of the binomial theorem, the \(q \)-binomial theorem. It goes back to Cauchy [4, p. 46, Eq. 18].

Theorem 2.2. For \(m \geq 1 \),

\[
(1 + T)(1 + qT) \cdots (1 + q^{m-1}T) = \prod_{i=0}^{m-1} (1 + q^iT) = \sum_{k=0}^{m} \binom{m}{k} q^{k(k-1)/2} T^k.
\]

Equivalently, for commuting variables \(X \) and \(Y \),

\[
(X + Y)(X + qY) \cdots (X + q^{m-1}Y) = \prod_{i=0}^{m-1} (X + q^iY) = \sum_{k=0}^{m} \binom{m}{k} q^{k(k-1)/2} X^{m-k} Y^k.
\]

Proof. Following Cauchy [4, p. 51], let \(h(T) = \prod_{i=0}^{m-1} (1 + q^iT) = \sum_{k=0}^{m} a_k T^k \). Then \((1 + T)h(qT) = h(T)(1 + q^nT) \). Equating coefficients of equal powers of \(T \),

\[
a_k = \frac{q^m - q^{k-1}}{q^1 - 1}a_{k-1} = \frac{q^{m-k+1} - 1}{q^1 - 1} q^{k-1} a_{k-1},
\]

so \(a_k = \binom{m}{k} q^{k(k-1)/2} \).

In particular,

\[
(X-1)(X-q) \cdots (X-q^{m-1}) = \sum_{k=0}^{m} \binom{m}{k} (-1)^k q^{k(k-1)/2} X^{m-k}.
\]

Actually, the idea of replacing \(T \) by \(qT \) to express \(q \)-products as \(q \)-series goes back to Euler [7, Ch. XVI, §306, 307].

The \(q^{k(k-1)/2} \) term that arises in the \(q \)-binomial theorem can be removed from explicit appearance. Define the \(n \)th \(q \)-power of a polynomial \(f(T) \) to be \(f(0; q) = 1 \) and \(f^{(n; q)} := f(T)f(qT) \cdots f(q^{n-1}T) \) for \(n \geq 1 \). Then the \(q \)-binomial theorem becomes

\[
(1 + T)^{(m; q)} = \sum_{k=0}^{m} \binom{m}{k} T^{(k; q)}.
\]

We can consider \(q \)-deformed powers of a polynomial in several variables by singling out one variable, e.g., in two variables

\[
f(X, Y)^{(m;q)} := f(X, Y)f(X, qY) \cdots f(X, q^{n-1}Y).
\]

This will appear later in the case of \((X \pm Y)^{(m; q)} \), whose value at \(X = x, Y = y \) will be written with abuse of notation as \((x \pm y)^{(mq)} \). For example,

\[
(x + 0)^{(n; q)} = x^n, \quad (0 + y)^{(n; q)} = q^{n(n-1)/2} y^n, \quad \binom{m}{k} q = \frac{(q^m - 1)^{(k; q)}}{(q^k - 1)^{(k; q)}}.
\]

The \(q \)-Vandermonde formula for \(\binom{m_1 + m_2}{k}_q \) is proven as for ordinary binomial coefficients.

Theorem 2.3. For \(m_1, m_2 \geq 0 \), \(\binom{m_1 + m_2}{k}_q = \sum_{j=0}^{k} \binom{m_1}{j} \binom{m_2}{k-j} q^{j(m_2-(k-j))} \).
Note the asymmetric roles of j and $k - j$ in the exponent of q on the right side.

Proof. Compare the coefficient of T^k on both sides of

$$
\prod_{i=0}^{m_1+m_2-1} (1 + q^j T) = \prod_{i=0}^{m_2-1} (1 + q^j T) \prod_{i=0}^{m_1-1} (1 + q^j q^{m_2} T).
$$

By a specialization argument, Theorem 2.3 is true for all integers m_1, m_2, possibly negative.

The following simple fact will be used when we let q vary p-adically.

Theorem 2.4. For $m, n \geq 0$, \(\binom{m}{n} q_1 \) \(\binom{m}{n} q_2 \) \((q_1 - q_2) \) \(\mathbb{Z}[q_1, q_2] \).

Proof. For all \(i \geq 0 \), \(q_1^i - q_2^i \) \((q_1 - q_2) \) \(\mathbb{Z}[q_1, q_2] \).

We now discuss the value of \(\binom{m}{n} q \) for \(m \geq n \) when \(q \) is specialized to various numbers.

When \(q = 1 \), \(\binom{m}{n} \) \(\binom{m}{n} \) counts the number of \(n \) element subsets of an \(m \) element set. When \(q \) is a prime power, \(\binom{m}{n} q \) counts the number of \(n \)-dimensional subspaces of an \(m \)-dimensional vector space over the field of size \(q \). This suggests the possibility of proving identities for \(q \)-binomial coefficients by letting \(q \) run through (infinitely many) prime powers and interpreting the identity as a combinatorial statement in linear algebra over finite fields. See [11] for this approach.

We now consider the case when \(q \) is specialized to a root of unity. For \(\zeta \) a root of unity of order \(b \) and \(n < b \), the value of \(\binom{m}{n} \) \(\zeta \) can be computed directly from the definition, since \((n) \mathbb{Z} \) \(\neq 0 \). The next theorem reduces the evaluation of all \(\binom{m}{n} \) \(\zeta \) to the case when \(n < b \).

Theorem 2.5. Let \(\zeta \) be a root of unity of order \(b \).

i) For integers \(k \) and \(l \), with \(l \geq 0 \), \(\binom{bk}{bl} \) \(\zeta \) \(\binom{k}{l} \).

ii) For integers \(k \) and \(l \) with \(l \geq 0 \) and \(0 \leq r, s < b \), \(\binom{bk+r}{bl+s} \) \(\zeta \) \(\binom{bk}{bl} \) \(\zeta \) \(\binom{k}{l} \) \(\zeta \) \(\binom{k}{l} \) \(\zeta \).

In particular, if \(n < b \) and \(m_1 \equiv m_2 \mod b \), then \(\binom{m_1}{n} \) \(\zeta \) \(\binom{m_2}{n} \) \(\zeta \).

Proof. i) \(\binom{bk}{bl} q = \prod_{j=0}^{b-1} \frac{q^{bk-j} - 1}{q^{b-l} - 1} = \prod_{j \neq 0 \mod b} \frac{q^{bk-j} - 1}{q^{b-l} - 1} \cdot \prod_{i=0}^{l-1} \frac{q^{b(k-i)} - 1}{q^{b(l-i)} - 1} \).

At \(q = \zeta \), the right side becomes \(\prod_{j=0}^{b-1} (k - i)/(l - i) = \binom{k}{l} \).

ii) First we show \(\binom{bk+a}{bl} \) \(\zeta \) \(\binom{bk+a}{bl} \) \(\zeta \) when \(a \) is not divisible by \(b \). Setting \(m = bk + a \), \(n = bl \), and \(q = \zeta \) in the equation \(\binom{m}{n} q = \binom{m}{n} q \binom{m-1}{n} q \), we get what we want. So the theorem is true for \(s = 0 \). For \(s > 1 \),

\[
\binom{bk+r}{bl+s} q = \frac{(bk+r)q(bk+r-1)q \cdots (bk+r-s+1)q}{(bl+s)(bl+s-1)q \cdots (bl+1)q} \binom{bk+r-s}{bl} q.
\]

None of the terms \((bl+j)q \) appearing in the denominator vanishes at \(q = \zeta \), so we can evaluate and find

\[
\binom{bk+r}{bl+s} \zeta = \frac{(r)_{\zeta}(r-1)_{\zeta} \cdots (r-s+1)_{\zeta}}{(s)_{\zeta}(s-1)_{\zeta} \cdots (1)_{\zeta}} \binom{bk+r-s}{bl} q = \binom{r}{s} \binom{bk+r-s}{bl} q.
\]
Corollary 2.1. Let ζ be a root of unity of order b and $n \in \mathbb{N}$. For m running through a fixed residue class mod b, $\binom{m}{n}_\zeta$ is a polynomial in m.

Proof. By Theorem 2.5 (ii), $\binom{m}{n}_\zeta$ is a polynomial in $[m/b] = (m - r)/b$ and r is fixed. □

Examples.

$$\binom{19}{5}_{-1} = \binom{18 + 1}{4 + 1}_{-1} = \binom{9}{2}_{1}_{-1} = 36,$$

$$\binom{17}{10}_i = \binom{16 + 1}{4 + 2}_i = \binom{4}{2}_i = 0, \quad \binom{-5}{6}_i = \binom{-8 + 3}{4 + 2}_i = \binom{-2}{1}_i = -2i.$$

The periodicity of $\binom{m}{n}_\zeta$ in m mod b, stated at the end of Theorem 2.5, can also be verified by computing $\binom{m+b}{n}_\zeta - \binom{m}{n}_\zeta$ with the q-Vandermonde formula.

Theorem 2.5 (and an extension to q-multinomial coefficients) can be proven by group actions [21].

For a root of unity ζ of order b, that $\binom{b}{n}_\zeta = 0$ for $1 \leq n \leq b - 1$ can be seen without Theorem 2.5, since the numerator of $\binom{b}{q}_\zeta$ vanishes at $q = \zeta$ while the denominator does not, or (using Theorem 2.2) since $\prod_{j=0}^{b-1}(1 + \zeta^jT) = 1 - (-T)^b$. Stated in terms of the bth cyclotomic polynomial $\Phi_b(q)$, this vanishing becomes

$$\binom{b}{n}_q \equiv 0 \mod \Phi_b(q)$$

when $1 \leq n \leq b - 1$, which is also clear from the second proof of Theorem 2.1. Specializing (2.7) at $q = 1$, we recover the familiar integer congruence $\binom{p^N}{n} \equiv 0 \mod p$ when $b = p^N$ is a power of a prime p. Since

$$\Phi_{p^N}(q) = \frac{q^{p^N} - 1}{q^{p^N-1} - 1} = (p)_{q^{p^N-1}},$$

when $b = p^N$, (2.7) can be written as $\binom{p^N}{n}_q \equiv 0 \mod (p)_{q^{p^N-1}}$.

The q-analogue of the exponential series was introduced by Jackson [13]:

$$E_q(X) := \sum_{n \geq 0} \frac{X^n}{(n)_q!}.$$

(In the literature, the notation $E_q(X)$ may denote a slightly different series.) Jackson’s q-version of $e^{x+y} = e^x e^y$ comes from (2.2) and the q-binomial theorem:

$$E_q(X)E_{1/q}(Y) = \sum_{n \geq 0} \frac{(X + Y)(X + qY) \cdots (X + q^{n-1}Y)}{(n)_q!} = \sum_{n \geq 0} \frac{(X + Y)^{(n)_q}}{(n)_q!}.$$

In particular,

$$E_q(X)^{-1} = E_{1/q}(-X) = \sum_{n \geq 0} (-1)^n q^{n(n-1)/2} \frac{X^n}{(n)_q!}.$$

We now discuss q-difference operators. Powers Δ^n of the difference operator Δ, where $(\Delta h)(x) = h(x + 1) - h(x)$ (here and in the rest of this section, x is an integer variable), play a role in Mahler expansions which will taken over in the q-analogue by a sequence of operators Δ_q^n first introduced by Jackson [14, p. 256], [15, p. 145].
The powers of Δ behave nicely on binomial coefficients, namely
\[
\Delta^m \binom{x}{n} = \begin{cases}
\binom{x}{n-m}, & \text{if } m \leq n; \\
0, & \text{if } m > n.
\end{cases}
\]
The q-analogue of powers of Δ arise naturally by considering differences of q-binomial coefficients.

First, note that in analogy with $\Delta \binom{x}{n} = \binom{x}{n-1}$,
\[
\Delta \binom{x}{n} = q^{x+1-n} \binom{x}{n-1}_q.
\]
Then, guided by the equation $\Delta^2 \binom{x}{n} = \Delta \binom{x+1}{n} - \Delta \binom{x}{n} = \binom{x}{n-2}$, we compute
\[
\Delta \binom{x+1}{n} = q^{x+2-n} \binom{x+1}{n-1}_q,
\]
so we’re naturally led to calculate not $\Delta \binom{x+1}{n}_q - \Delta \binom{x}{n}_q$ but
\[
\Delta \binom{x+1}{n} - q\Delta \binom{x}{n} = q^{x+2-n} \left(\binom{x+1}{n-1}_q - \binom{x}{n-1}_q \right) = q^{2(x+2-n)} \binom{x}{n-2}_q.
\]
Let $(Eh)(x) = h(x + 1)$ be the shift operator, so we’ve computed
\[
(E - I) \binom{x}{n} = q^{x+1-n} \binom{x}{n-1}_q, \quad (E - I)(E - q) \binom{x}{n} = q^{2(x+2-n)} \binom{x}{n-2}_q.
\]
Of course $n \geq 1$ and $n \geq 2$ for these respective equations.

Experience with q-deformed products as in the q-binomial theorem now makes the following definition natural: $\Delta_q^n := (E - I)^{(n;q)} = \Delta^{(n;q)}$. In full, this says
\[
\Delta_q^n := \begin{cases}
I, & n = 0; \\
(E - I)(E - q) \cdots (E - q^{n-1}), & n \geq 1,
\end{cases}
\]
so
\[
(2.10) \quad \Delta_q^m \binom{x}{n}_q = \begin{cases}
q^{m(x+m-n)} \binom{x}{n-m}_q, & \text{if } m \leq n; \\
0, & \text{if } m > n.
\end{cases}
\]
In particular, $\Delta_q^m \binom{x}{n}_q |_{x=0} = \delta_{mn}$. The appearance of a function of x on the right side of (2.10), outside the q-binomial coefficient, can be removed by using an alternate q-difference operator:
\[
(\mathcal{D}_q^m f)(x) := q^{-mx} (\Delta_q^m f)(x).
\]
Then
\[
\mathcal{D}_q^m \binom{x}{n}_q = \begin{cases}
q^{-m(n-m)} \binom{x}{n-m}_q, & \text{if } m \leq n; \\
0, & \text{if } m > n.
\end{cases}
\]
By (2.6),
\[
(2.11) \quad (\Delta_q^n f)(x) = \sum_{k=0}^n \binom{n}{k}_q (-1)^k q^{k(k-1)/2} f(x + n - k).
\]
The shift \(E \) commutes with multiplication by \(q \), so \(\Delta_q^n \) and \(\Delta_q^{n'} \) commute, but \(\Delta_{q^n} \Delta_{q^{n'}} \neq \Delta_{q^{n+n'}} \). To give a formula for \(\Delta_{q^{n+n'}} \) in terms of \(\Delta_{q^n} \) and \(\Delta_{q^{n'}} \),

\[
\Delta_{q^{n+n'}} = (E - q^{n+n'-1}) \cdots (E - q^{n'}) \Delta_{q^{n'}} = \sum_{k=0}^{n} \binom{n}{k}_q q^{(k(1))/2}(-q^{n'})^k E^{n-k} \Delta_{q^{n'}}
\]

by the \(q \)-binomial theorem, so

\[
(\Delta_{q^{n+n'}} f)(x) = \sum_{k=0}^{n} \binom{n}{k}_q (-1)^k q^{(k(1))/2} q^{n'k} (\Delta_{q^{n'}} f)(x + n - k) = q^{n'x} (\Delta_{q^n} g)(x),
\]

where \(g(x) = q^{-n'x} (\Delta_{q^{n'}} f)(x) \). This can be written more conveniently in terms of the \(\mathcal{D}_q^m \):

(2.12) \[\mathcal{D}_q^{n+n'} = q^{n'n'} \mathcal{D}_q^n \mathcal{D}_q^{n'} . \]

For \(n \in \mathbb{Z} \), let \(\mathcal{U}_n(x) = q^{nx} \) (this depends on \(q \)), so \(\Delta_q^n = \mathcal{U}_n \mathcal{D}_q^n \) and \(E^k \mathcal{U}_n = q^{kn} \mathcal{U}_n E^k \). When \(q = 1 \) the need for \(\mathcal{U}_n \) is not apparent. The notation \(\mathcal{U}_n \) comes from a similar function \(U_n \) used by Verdoort [25]. Her paper will be discussed in Section 4.

The effort to directly relate \(\Delta_q^n \Delta_q^{n'} \) with \(\Delta_{q^{n+n'}} \) led to a concise multiplicative relation (2.12) among the \(\mathcal{D}_q \)'s rather than among the \(\Delta_q \)'s. We now use (2.12) to give a formula for \(\Delta_q^n \Delta_q^{n'} \) as a linear combination of various \(\Delta_q \)'s, so the \(q \)-difference operators are a basis of the algebra they generate (they have no linear relations by (2.10)).

Theorem 2.6. For \(m, n \geq 0 \),

\[
\Delta_q^m \Delta_q^n = \sum_{j=0}^{m} \binom{m}{j}_q (q^n - 1)(q^n - q) \cdots (q^n - q^{m-j-1}) \Delta_q^{n+j}
\]

\[
= \sum_{j=0}^{m} \binom{m}{j}_q (q^n - 1)^{(m-j)} \Delta_q^{n+j}
\]

\[
= \sum_{i+j=m+n} \binom{m}{i}_q \binom{n}{i}_q (q^i - 1)^{(i)} \Delta_q^i.
\]

Proof. By the \(q \)-binomial theorem,

\[
\Delta_q^m \Delta_q^n = \sum_{k=0}^{m} \binom{m}{k}_q (-1)^{m-k} q^{(m-k)(m-k-1)/2} E^k \Delta_q^n.
\]

To get a formula for \(E^k \Delta_q^n \), we use the following identity: for all \(k \geq 0 \),

\[
a^k = \sum_{i=0}^{k} \binom{k}{i}_q (a - 1)(a - q) \cdots (a - q^{i-1}) = \sum_{i=0}^{k} \binom{k}{i}_q (a - 1)^{(i)}.
\]

This is dual to (2.6), or arises naturally from consideration of \(q \)-Mahler expansions in Section 3 (i.e., from the \(q \)-difference calculus), so we won’t stop to motivate it here. Setting \(a = E \),

(2.13) \[E^k = \sum_{i=0}^{k} \binom{k}{i}_q \Delta_q^i . \]
Thus

\[E^k \Delta_q^n = E^k U_n \Delta_q^n = q^{kn} U_n E^k \Delta_q^n = q^{kn} U_n \sum_{i=0}^{k} \binom{k}{i} U_i \Delta_q^i \Delta_q^n \text{ by (2.13)} \]

\[= \sum_{i=0}^{k} \binom{k}{i} q^{n(k-i)} U_{n+i} \Delta_q^{n+i} \text{ by (2.12)} \]

\[= \sum_{i=0}^{k} \binom{k}{i} q^{n(k-i)} \Delta_q^{n+i}, \]

so

\[\Delta_q^m \Delta_q^n = \sum_{k=0}^{m} \sum_{i=0}^{k} (-1)^{m-k} q^{(m-k)(m-k-1)/2} q^{n(k-i)} \binom{m}{k} \binom{k}{i} \Delta_q^{n+i} \]

\[= \sum_{i=0}^{m} \sum_{k=0}^{m-i} (-1)^{m-i-k} q^{(m-i-k)(m-i-k-1)/2} q^{nk} \binom{m-i}{k} \binom{m}{i} \Delta_q^{n+i} \]

\[= \sum_{i=0}^{m} \binom{m}{i} q^{n-1} q^{(m-i)q} \Delta_q^{n+i} \text{ by (2.6)} \]

\[= \sum_{i=0}^{m} \binom{m}{i} q^{n-1} q^{i} \Delta_q^{m+n-i}. \]

\[\square \]

Example. \(\Delta_q^2 \Delta_q^n = (q^n - 1)(q^n - q) \Delta_q^n + (q^n - 1)(q + 1) \Delta_q^{n+1} + \Delta_q^{n+2}. \)

The case \(m = 1 \) of Theorem 2.6 is essentially the recursive definition \(\Delta_q^{n+1} = (E - q^n) \Delta_q^n. \)

Once the formula in Theorem 2.6 is found, it can also be proven by induction on \(m, \) without using noncommuting operators \(E^k \) and \(U_n, \) as the polynomial identity

\[(X - 1)^{(m,q)}(X - 1)^{(n,q)} = \sum_{i=0}^{m} \binom{m}{i} q^{n-1} q^{(m-i)q}(X - 1)^{(n+i,q)} \]

\[= \sum_{i=0}^{m} \binom{m}{i} q^{n-1} q^{(m-i)q}(X - 1)^{(m,q)}(X - q^n)^{(i,q)}. \]

Dividing by \((X - 1)^{(m,q)} \), we get an identity which is a special case of the generalized \(q \)-binomial theorem [11, p. 252].

The \(q \)-analogue of the formula

\[\Delta_q^n(fg) = \sum_{k=0}^{n} \binom{n}{k} (\Delta_q^k f)(\Delta_q^{n-k} E^k g) \]
\[(2.14)\]
\[
\Delta^n_q(fg) = \sum_{k=0}^{n} \binom{n}{k} (\Delta^k_q f)(\Delta^{n-k}_q E^k g).
\]

In the inductive verification of this, use (for \(r \leq n\))
\[
(E - q^n)(FG) = (E - q^r)F \cdot EG + q^r F \cdot (E - q^{n-r})G
\]
with \(F = \Delta^k_q f, G = \Delta^{n-k}_q E^k g\), and \(r = k\).

3. \(p\)-adic Features of \(q\)-Formalism

In Section 2, the emphasis was on \(q\) as an indeterminate. Here it will be on \(q\) as a \(p\)-adic variable, i.e., as an element of a complete valued field \(K\) containing \(\mathbb{Q}_p\). (We do not assume \(q \in \mathbb{Q}_p\).) As we will have no use for the archimedean absolute value function, the absolute value on \(K\) will be denoted simply as \(| \cdot |\), and \(\text{ord}\) is the corresponding additive valuation: \(|z| = (1/p)^{\text{ord}(z)}\). The valuation ring \(\{z \in K : |z| \leq 1\}\) will be denoted \(\mathcal{O}_K\), with maximal ideal \(m_K\). We normalize the absolute value so \(|p| = 1/p\).

For the benefit of readers outside of number theory, we recall some facts about power functions and roots of unity in \(p\)-adic fields.

Lemma 3.1. (i) The roots of unity in \(K\) which reduce to 1 in the residue field \(\mathcal{O}_K/m_K\) are exactly the \(p\)th power roots of unity in \(K\).

(ii) If \(\zeta\) is a root of unity of order \(p^N \geq 1\), then
\[
|\zeta - 1| = (1/p)^{1/p^{N-1}(p-1)} \geq (1/p)^{1/(p-1)}.
\]

The roots of unity in \(K\) are a discrete set.

(iii) For \(q \in K\), the sequence \(\{1, q, q^2, q^3, \ldots\}\) can be extended to a continuous function \(q^x\) for \(x \in \mathbb{Z}_p\) if and only if \(|q - 1| < 1\), in which case
\[
q^x = \sum_{n \geq 0} (q - 1)^n \binom{x}{n}, \quad |q^x - 1| \leq |q - 1| < 1.
\]

(iv) If \(|q - 1| < 1\), then \(q^x = 1\) for \(x \neq 0\) if and only if \(q\) is a root of unity of order \(p^N\) and \(x \in p^N \mathbb{Z}_p\).

Proof. (i) The residue field \(\mathcal{O}_K/m_K\) has characteristic \(p\). Since \(X^a - 1\) has distinct roots in characteristic \(p\) when \(a\) is prime to \(p\), a root of unity \(\zeta\) in \(K\) of order \(ap^b\) with \(a > 1\) and \((a, p) = 1\) has \(\zeta^{p^b} \not\equiv 1 \mod m_K\), so \(\zeta \not\equiv 1 \mod m_K\). Since the only \(p\)th power root of unity in characteristic \(p\) is 1, if \(\zeta^{p^N} = 1\) in \(K\), then in the residue field of \(K\) we have \(\zeta^{p^N} \equiv 1 \mod m_K\), so \(\zeta \equiv 1 \mod m_K\).

(ii) We have
\[
\prod_{i=1 \atop (p,i)=1}^{p^N} (1 - \zeta^i) = \Phi_{p^N}(1) = p,
\]
so
\[
p = (1 - \zeta)^{p^{N-1}(p-1)} \prod_{i=1 \atop (p,i)=1}^{p^N} \frac{1 - \zeta^i}{1 - \zeta}.
\]
and for \(i\) prime to \(p\), the ratio \((1 - \zeta^i)/(1 - \zeta) = 1 + \zeta + \cdots + \zeta^{i-1}\) is congruent in the residue field of \(K\) to \(i \neq 0 \mod m_K\), so this ratio has absolute value 1, hence \(1 - \zeta\) has the indicated size.

For two distinct roots of unity \(\zeta\) and \(\zeta'\) in \(K\), either \(\zeta \not\equiv \zeta' \mod m_K\), so \(|\zeta - \zeta'| = 1\), or \(\zeta/\zeta' \equiv 1 \mod m_K\), and then \(|\zeta - \zeta'| = |\zeta/\zeta' - 1| \geq (1/p)^{1/(p-1)}\), so the roots of unity in \(K\) are a (bounded) discrete set.

(iii) For “if”, we have for any \(m \in \mathbb{N}\) that

\[
q^m = (1 + q - 1)^m = \sum_{n=0}^{m} (q - 1)^n \binom{m}{n}.
\]

Since \((q - 1)^n \to 0\), the continuous function

\[
q^x = \sum_{n \geq 0} (q - 1)^n \binom{x}{n}
\]
on \(\mathbb{Z}_p\) is the \(p\)-adic interpolation of \(\{q^m\}_{m \geq 0}\). For “only if”, \(q^p \to q^0 = 1\) as \(N \to \infty\), so \(|q| = 1\) and as in (i) we conclude \(|q - 1| < 1\).

(iv) Let \(x = p^n u\) with \(u\) a unit in \(\mathbb{Z}_p\). Then \(q^{p^n u} = 1\) if and only if \(q^{p^n} = 1\), by taking the \((1/u)\)th power.

Applying (iii) to \(q\)-analogues, \((m)_q = (q^m - 1)/(q - 1)\) for \(m \in \mathbb{Z}\) extends to a continuous function \((x)_q\) for \(x \in \mathbb{Z}_p\) if and only if \(|q - 1| < 1\), in which case the extension to \(\mathbb{Z}_p\) is

\[
(x)_q = \begin{cases}
\frac{q^{x-1}-1}{q-1}, & \text{if } q \neq 1; \\
x, & \text{if } q = 1,
\end{cases}
\]

and by (iii), \((x)_q \equiv x \mod m_K\). In particular, if \(x \in \mathbb{Z}_p^\times\), then \((x)_q \in O_K^\times\).

For \(q \neq 1\), \((x)_q\) is a nonvanishing function unless, by (iv), \(q\) is a nontrivial root of unity of order \(p^N\), in which case \((x)_q = (j)_q\) where \(x \equiv j \mod p^N\) and \(0 \leq j \leq p^N - 1\).

We now define the \(q\)-analogue of binomial coefficient functions.

For \(|q - 1| < 1\), \((-m)_q\) has a continuous extension from \(m \in \mathbb{Z}\) to \(x \in \mathbb{Z}_p\), given by

\[
\binom{x}{n}_q = \frac{(x)_q(x-1)_q \cdots (x-n+1)_q}{(n)_q!}
= \frac{(q^x-1)(q^{x-1}-1) \cdots (q^{x-m+1}-1)}{(q^n-1)(q^{n-1}-1) \cdots (q-1)},
\]

provided \((n)_q! \neq 0\), i.e., \(q\) is not a nontrivial \(p\)th power root of unity of order \(\leq n\).

If \(|q-1| < 1\) and \(q\) is a root of unity of order \(p^N\), Corollary 2.1 implies \((-m)_q\) is a polynomial function of \(x\) on cosets of \(p^N\mathbb{Z}_p\). For \(x = p^N y + r\) and \(n = p^N l + s\) where \(0 \leq r, s < p^N\), Theorem 2.5(ii) extends by continuity to

\[
\binom{x}{n}_q = \binom{y}{l}_q \binom{r}{s}_q
\]

(3.1)

For example, if \(p = 2\), then

\[
\binom{x}{2l}_1 = \begin{cases}
(x/2)_l, & \text{if } x \equiv 0 \mod 2; \\
(x-1)_l/2, & \text{if } x \equiv 1 \mod 2,
\end{cases}
\]

\[
\binom{x}{2l+1}_1 = \begin{cases}
0, & \text{if } x \equiv 0 \mod 2; \\
((x-1)/2)_l, & \text{if } x \equiv 1 \mod 2.
\end{cases}
\]
So \(\binom{\cdot}{n}_q \) is an exponential function of \(x \) (a polynomial in \(q^x \)) if \(q \) is not a root of unity and is locally a polynomial in \(x \) if \(q \) is a root of unity.

By Theorem 2.1, \(|\binom{\cdot}{n}_q| \leq 1 \) for all \(x \in \mathbb{Z}_p \), with equality if \(x = n \).

The difference operators \(\Delta^n_q \) and \(\Omega^n_q \) make sense on functions of a p-adic integer variable \(x \), and equations (2.10) and (2.11) remain true when \(x \) is any \(p \)-adic integer.

By continuity, Theorems 2.3 and 2.4 become

Theorem 3.1. If \(|q - 1| < 1 \), then for all \(x, y \in \mathbb{Z}_p \), \(\binom{x+y}{k}_q = \sum_{j=0}^{k} \binom{x}{j}_q \binom{y}{k-j}_q q^{j(y-(k-j))} \).

Theorem 3.2. If \(x \in \mathbb{Z}_p \) and \(|q_1 - 1| < 1, |q_2 - 1| < 1 \), then \(|\binom{\cdot}{n}_q| - \binom{\cdot}{n}_{q_1} |q_2| \leq |q_1 - q_2| \).

So \(\binom{\cdot}{n}_q = \lim_{q \to q} \binom{\cdot}{n}_{q'} \). In particular, formulas involving \(q \)-binomial coefficients when \(q \) is a root of unity can be computed first at non roots of unity and then pass to a limit.

For example, let \(1 \leq k \leq p^r \) with \(k = p^j k' \) and \(k' \) prime to \(p \). For \(|q - 1| < 1 \) with \(q \) not a root of unity,

\[
\binom{p^r}{k}_q = \binom{p^r}{k}_q \binom{p^r - 1}{k - 1}_q = \binom{p^r}{k}_q \frac{1}{(k')_{q^{\omega(q)}}} \binom{p^r - 1}{k - 1}_q.
\]

In \(\mathcal{O}_K/m_K \), \(\binom{p^r - 1}{k - 1}_q \equiv \binom{p^r - 1}{k - 1}_q \equiv (-1)^{k-1} \) and \((k')_{q^{\omega(q)}} \equiv k' \neq 0 \), so

\[
(3.2) \quad \binom{p^r}{k}_q = |\binom{p^r}{k}_q|.
\]

By continuity in \(q \), (3.2) is also true when \(q \) is a root of unity. Alternatively, (3.1) could be used instead for a direct calculation when \(q \) is not a root of unity.

We now discuss the \(q \)-analogue of Mahler expansions.

Theorem 3.3 (\(q \)-Mahler Theorem). For \(q \in K \) with \(|q - 1| < 1 \), every continuous function \(f: \mathbb{Z}_p \to K \) has a unique representation in the form

\[
f(x) = \sum_{n \geq 0} c_{n,q} \binom{x}{n}_q
\]

where \(c_{n,q} \in K \) and \(\lim_{n \to \infty} c_{n,q} = 0 \). A formula for \(c_{n,q} \) is

\[
c_{n,q} = (\Delta^n_q f)(0) = \sum_{k=0}^{n} \binom{n}{k}_q (-1)^{k} q^{k(k-1)/2} f(n - k) = \sum_{k=0}^{n} \binom{n}{k}_q (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k).
\]

We will give four proofs of Theorem 3.3 below.

In Theorem 3.3, we call \(c_{n,q} \) the \(n \)th \(q \)-Mahler coefficient of \(f \) and \(\sum c_{n,q} \binom{x}{n}_q \) the \(q \)-Mahler expansion of \(f \). The terms “Mahler coefficient” and “Mahler expansion” will refer to the case \(q = 1 \). The formula for \(c_{n,q} \) in Theorem 3.3 will be called the \(q \)-Mahler Inversion Formula.

The formula for \(c_{n,q} \) follows from computing \((\Delta^n_q f)(0) \) using (2.10). Replacing \(f \) by \((E^y f)(x) = f(x + y) \), we have \(\lim_{n \to \infty} (\Delta^n_q f)(y) = 0 \) for all \(y \in \mathbb{Z}_p \). Like the case \(q = 1 \), this limit turns out to be uniform in \(y \), and in fact there is some uniformity in \(q \) as well (which
is not apparent by looking only at the case \(q = 1 \). Such uniformities will arise from two of the proofs of Theorem 3.3.

Example. For \(|a - 1| < 1\) and \(|q - 1| < 1\),

\[
(3.3) \quad a^x = \sum_{n \geq 0} (a - 1)(a - q) \cdots (a - q^{n-1}) \binom{x}{n}_q = \sum_{n \geq 0} (a - 1)^{(n,q)} \binom{x}{n}_q.
\]

Example. Using the \(q \)-binomial theorem, the sequence \((1 + t)^{(m,q)}\) extends continuously from \(m \in \mathbb{N} \) to \(x \in \mathbb{Z}_p \) if and only if \(|t| < 1\), when

\[
(1 + t)^{(x,q)} = \sum_{n \geq 0} q^{n(n-1)/2} \binom{x}{n}_q.
\]

This could also be proven in a style similar to that of Lemma 3.1 (iii).

For any \(x, y \in \mathbb{Z}_p \), \((1 + t)^{(x+y,q)} = (1 + t)^{(x,q)}(1 + q^x t)^{(y,q)}\). Setting \(y = -x \) yields

\[
(1 + t)^{(r,q)} = (1 + q^r t)^{(-r,q)}.
\]

For example, computing \((1 + q^m t)^{(-m,q)}\) in two ways for \(m \geq 1 \), we have

\[
\frac{1}{(1 + t)(1 + qt) \cdots (1 + q^{m-1} t)} = \sum_{n \geq 0} q^{n(n-1)/2} (q^n t)^n \binom{-m}{n}_q = \sum_{n \geq 0} \binom{m + n - 1}{n}_q (-t)^n,
\]

which is due to Cauchy [4, Eq. 19, p. 46] as an identity over the complex numbers.

Warning. For \(|a - 1| < 1\), writing \(a = 1 + t \), it seems reasonable to define \(a^{(x,q)} = (1 + t)^{(x,q)} \) in the sense of the above example. However, although \(|a^{(m,q)} - 1| < 1\) and \((1 + T)^{(mn,q)} = ((1 + T)^{(m,q)})^{(n,q^m)}\) (which implies (2.1) by looking at the coefficient of \(T \)), it is false that \(a^{(mn,q)} = (a^{(m,q)})^{(n,q^m)}\), even when \(m = n = 2 \). A correct way to state the \(q \)-version of \((1 + T)^{mn} = ((1 + T)^{m})^{n}\) so that it is valid to specialize the variable is

\[
(1 + T)^{(mn,q)} = (1 + T)^{(n,q^m)}(1 + qT)^{(n,q^m)} \cdots (1 + q^{m-1}T)^{(n,q^m)}.
\]

Our first proof of Theorem 3.3 will deduce the result from the known case \(q = 1 \). Recall that a countable set of vectors \(\{e_n\}_{n \geq 0} \) in a \(K \)-Banach space \((V, \| \cdot \|)\) (we assume the norm on \(V \) is nonarchimedean: \(|v + w| \leq \max(|v|, |w|)|\)) is called an orthonormal basis if every \(v \in V \) has a unique representation in the form \(v = \sum c_n e_n \) where \(c_n \to 0 \) and \(\|v\| = \max |c_n| \). Mahler’s theorem says the functions \((e_n^*)\) are an orthonormal basis of \(C(\mathbb{Z}_p, K)\), topologized by the sup-norm.

The following standard lemma shows that a small perturbation of an orthonormal basis is still an orthonormal basis. The ideas in the proof are taken from [3, Prop. 2 §1.1.4, Prop. 4 §2.7.2].

Lemma 3.2. Let \(K \) be a complete nonarchimedean nontrivially valued field and \(V \) be a \(K \)-Banach space with an orthonormal basis \(\{e_n\}_{n \geq 0} \). If \(e'_n \in V \) with \(\sup_{n \geq 0} \|e_n - e'_n\| < 1 \), then \(\{e'_n\} \) is an orthonormal basis of \(V \).

Proof. Step 1) \(\| \sum_{n=0}^N c_n e'_n\| = \max_{0 \leq n \leq N} |c_n| \).
Let \(\varepsilon = \sup_{n \geq 0} ||e_n - e'_n|| < 1 \). Writing

\[
\sum_{n=0}^{N} c_n e'_n = \sum_{n=0}^{N} c_n (e'_n - e_n) + \sum_{n=0}^{N} c_n e_n,
\]

the first sum has size at most \(\varepsilon \max |c_n| \).

Step 2) The \(K \)-linear span (= finite linear combinations) of the \(e'_n \) is dense in \(V \).

Let \(W \) be this span. For \(v \in V \), let \(v = \sum_{n \geq 0} c_n e_n \). Choose \(N \) so \(|c_n| \leq \varepsilon \|v\| \) for \(n \geq N + 1 \). Then

\[
v - \sum_{n=0}^{N} c_n e'_n = \sum_{n=0}^{N} c_n (e_n - e'_n) + \sum_{n=N+1}^{\infty} c_n e_n
\]

has norm \(\leq \varepsilon \|v\| \). Assume \(W \) is not dense, so there is \(v \in V \) such that \(a = \inf_{w \in W} \|v - w\| > 0 \). Since \(a/\varepsilon > a \), there is \(w \in W \) such that \(0 < \|v - w\| < a/\varepsilon \). From above, there is \(w' \in W \) such that

\[
\|v - w - w'\| \leq \varepsilon \|v - w\| < a,
\]

a contradiction.

Step 3) \(\{e'_n\} \) is an orthonormal basis.

By Step 1, it suffices to show for each \(v \in V \) that \(v = \sum c_n e'_n \) for some sequence \(c_n \to 0 \) in \(K \).

Choose \(w_1 \in W \) such that \(\|v - w_1\| \leq 1/2 \). Choose \(w_2 \in W \) such that \(\|v - w_1 - w_2\| \leq 1/4 \).

Continuing, choose \(w_m \in W \) such that \(\|v - w_1 - \cdots - w_m\| \leq 1/2^m \).

Then \(\|w_m\| \to 0 \) and \(v = \sum w_m \).

Writing \(w_m = \sum b_{m,n} e'_n \), we have \(b_{m,n} = 0 \) for \(n \) large and \(|b_{m,n}| \leq \|w_m\| \) by Step 1. Thus

\[
v = \sum_{m} \left(\sum_{n} b_{m,n} e'_n \right) = \sum_{m} \left(\sum_{n} b_{m,n} \right) e'_n,\]

where the interchange of the double sum is justified by [12, Lemma 4.1.3].

Here is a first proof of Theorem 3.3.

Proof. By Mahler’s theorem, \(\{\binom{x}{n}\}_{n \geq 0} \) is an orthonormal basis of \(C(\mathbb{Z}_p, K) \). For all \(n \geq 0 \), Theorem 3.2 implies

\[
\left| \binom{x}{n}_q - \binom{x}{n} \right|_{\sup} \leq |q - 1| < 1.
\]

Therefore we are done by Lemma 3.2.

This proof of Theorem 3.3 is succinct, but depends on already having the result in the case \(q = 1 \). The same argument would deduce the result for all \(q \) with \(|q - 1| < 1 \) if we had it for any one such \(q \).

By a similar idea, since \(\{\binom{x}{m}
binom{y}{n}\}_{m,n} \) is an orthonormal basis of \(C(\mathbb{Z}_p \times \mathbb{Z}_p, K) \), topologized by the sup-norm, so is \(\{\binom{x}{m} \binom{y}{n} \}_{m,n} \) for fixed \(q_1, q_2 \in K \) with \(|q_1 - 1|, |q_2 - 1| < 1 \). There is a similar extension to \(C(\mathbb{Z}_p^r, K) \) for any \(r \geq 1 \).

Since \(\Delta_q^n f(x) = \Delta^n_q (E^x f)(0) \), by the \(q \)-Mahler theorem we have \(\lim_{n \to \infty} \Delta_q^n f(x) = 0 \) for each \(x \in \mathbb{Z}_p \). However, this limit is actually uniform in \(x \). To see this we give a second proof of the \(q \)-Mahler theorem, one which will not assume Mahler’s theorem already. It will show directly that \(\lim_{n \to \infty} \Delta_q^n f = 0 \) in \(C(\mathbb{Z}_p, K) \).
First we record a lemma. It gives some properties of the size of \((x)_q\). Extending (2.1) from \(Z\) to \(Z_p\), if \(|q - 1| < 1\) then \((xy)_q = (x)_q(y)_q^p\) for \(x, y \in Z_p\). In particular, for \(n \in \mathbb{N}\) and \(u \in Z_p^\times\),

\[
(p^n u)_q = (p^n)_q(u)_q^p.
\]

Lemma 3.3. Let \(|q - 1| < 1\).

(i) If \(x = p^n u\) with \(u \in Z_p^\times\), \(|(x)_q| = |(p^n)_q|\).

(ii) \(|(p^n)_q| \leq \prod_{k=0}^{n-1} \max(|q^k - 1|, 1/p) \leq \max(|q - 1|, 1/p)^n < 1\).

(iii) If \(|q - 1| < (1/p)^{1/(p-1)}\), then \(|(x)_q| = |x|\) for all \(x \in Z_p\).

Proof. (i) Use (3.4), recalling \((u)_q^p = u \equiv 0 \mod m_K\).

(ii) By (2.1),

\[
(p^n)_q = (p)_q(p)(p)_q^p \cdots (p)_q^p = (p)_q^q = \Phi_{p}(q) \equiv (q - 1)^{p-1} \equiv 0.
\]

(iii) By (i), we only need to show the result for \(x = p^n\). Moreover, by (3.5) and \(|q^k - 1| \leq |q - 1| < (1/p)^{1/(p-1)}\), it suffices to show the result for \(x = p\). Since

\[
(p)_q = q^p - 1 = \sum_{k=1}^{p} \binom{p}{k}(q - 1)^{k-1}
\]

and each term in the sum except the one for \(k = 1\) has size less than \(1/p\), we’re done. \(\square\)

As a consequence of (i) and (ii), we have

\[
|(x)_q - (y)_q| = |(x - y)_q| \leq \max(|q - 1|, 1/p)^{\text{ord}(x-y)},
\]

which can be rewritten as \(|q^x - q^y| \leq |q - 1| \max(|q - 1|, 1/p)^{\text{ord}(x-y)}\), in which form it appears in [22, Theorem 32.4].

From (ii), (3.2) can be weakened to

\[
\left| \binom{p^r}{k}_q \right| \leq \max(|q - 1|, 1/p)^{r-j},
\]

where we recall \(1 \leq k \leq p^r, j = \text{ord}(k)\).

We now give a second proof of Theorem 3.3. The idea is taken from the proof of Mahler’s theorem in [22, Exer. 52.E].

Proof. Since \(|\Delta_q^{n+1} f|_{\text{sup}} \leq |\Delta_q^n f|_{\text{sup}}\), it suffices to show \(\lim_{r \to \infty} \Delta_q^{p^r} f = 0\). We have

\[
(\Delta_q^{p^r} f)(x) = \sum_{k=0}^{p^r} \binom{p^r}{k}_q (-1)^{p^r-k} q^{(p^r-k)(p^r-k-1)/2} f(k + x)
\]

\[
= \sum_{k=0}^{p^r} \binom{p^r}{k}_q (-1)^{p^r-k} q^{(p^r-k)(p^r-k-1)/2} (f(k + x) - f(x)).
\]

The \(k = 0\) term vanishes, so by (3.6)

\[
|\Delta_q^{p^r} f|_{\text{sup}} \leq \max_{i+j=r} \max(|q - 1|, 1/p)^{i+j} \rho_j(f),
\]

where \(\rho_j(f) = \max_{i+j=r} \max(|q - 1|, 1/p)^{i+j} \rho_j(f)\).
where $\rho_j(f) = \sup_{|x-y| \leq 1/p^j} |f(x) - f(y)|$. The terms indexed by i and j are both uniformly bounded above, and each tends to zero for large values of the index.

Not only does this show $\lim_{n \to \infty}(\Delta^q_n f)(x) = 0$ uniformly in x, but also (for fixed $\delta \in (0, 1)$) uniformly in q for $|q-1| \leq \delta < 1$.

For the third proof of the q-Mahler theorem, we extend a periodicity property of ordinary binomial coefficients to q-binomial coefficients: for any $N \geq 1$ and all $n < p^N$,

$$a \equiv b \mod p^N \Rightarrow \left(\frac{a}{n}\right) \equiv \left(\frac{b}{n}\right) \mod p.$$

For q-binomial coefficients, the same result is true provided N is taken large enough depending on q.

Lemma 3.4. Let $|q-1| < 1$. For N large, depending on q, if $x \equiv y \mod p^N \mathbb{Z}_p$ and $n < p^N$ then

$$\left|\left(\frac{x}{n}\right)_q - \left(\frac{y}{n}\right)_q\right| \leq \frac{1}{p}.$$

More precisely, this is true if $1/(p^{N-1}(p-1)) < \text{ord}(q-1)$.

Proof. By Theorem 2.5,

$$m_1 \equiv m_2 \mod p^N \Rightarrow \left(\frac{m_1}{n}\right)_q - \left(\frac{m_2}{n}\right)_q \in \Phi_{p^N}(q)\mathbb{Z}[q].$$

So by continuity,

$$\left|\left(\frac{x}{n}\right)_q - \left(\frac{y}{n}\right)_q\right| \leq \left|\Phi_{p^N}(q)\right| = \left|(p)^{q^{N-1}}\right|.$$

For N large, $|q^{p^N-1} | < (1/p)^{1/(p-1)}$, so $(p)^{q^{N-1}}$ has size $|p| = 1/p$ by Lemma 3.3(iii).

Let’s be more precise about how large N has to be. For any N,

$$\Phi_{p^N}(q) = \prod_{\zeta \neq 1, \zeta^{p^N-1}} (q - \zeta).$$

There are $p^{N-1}(p-1)$ terms in the product. When $1/p^{N-1}(p-1) < \text{ord}(q-1)$, then $|q-1| < |\zeta - 1| = (1/p)^{1/p^{N-1}(p-1)}$ for all such ζ by Lemma 3.1(ii), so all the terms have the same size and therefore

$$\left|\Phi_{p^N}(q)\right| = \frac{1}{p}.$$

If we work modulo $(q-1, p)$, then for $x \equiv y \mod p^N$ and $n < p^N$, $\left(\frac{x}{n}\right)_q \equiv \left(\frac{y}{n}\right)_q \equiv (\frac{y}{n})_q$, so without needing N to be large, we have $\left|\left(\frac{x}{n}\right)_q - \left(\frac{y}{n}\right)_q\right| \leq \max(|q-1|, 1/p)$.

Now we give a third proof of Theorem 3.3. Like the second, it does not require prior knowledge at $q = 1$. It is based on the proof in [17, pp. 99–100].

Proof. Let

$$L: \{(c_n)_{n \geq 0} : c_n \in K, c_n \to 0\} \to C(\mathbb{Z}_p, K)$$
by $(c_n) \mapsto \sum_{n \geq 0} c_n \binom{x}{n}_q$. This is K-linear and continuous, where the domain and range are both topologized by the appropriate sup-norm. We want to show L is onto. By scaling it suffices to show the restriction $L : B \to C(\mathbb{Z}_p, \mathcal{O}_K)$ is onto, where

$$B = \{(c_n) : |c_n| \leq 1, c_n \to 0\}.$$

By completeness of B and continuity of L, it is enough to show that for any $f \in C(\mathbb{Z}_p, \mathcal{O}_K)$, there is some $s \in B$ such that $|f - L(s)| \leq |p|$. (Then apply the result to $g = (f - L(s))/p$ to get $s' \in B$ such that $|f - L(s + ps')| \leq |p^2|$, etc.) That is, we want to show surjectivity of the map

$$\{(c_n) : c_n \in \mathcal{O}_K/p, c_n = 0 \text{ for large } n\} \to C(\mathbb{Z}_p, \mathcal{O}_K/p)$$

given by

$$(c_n) \mapsto \sum_{n \geq 0} c_n \binom{x}{n}_q \mod p.$$

Note that the quotient topology on \mathcal{O}_K/p is the discrete topology. Thus

$$C(\mathbb{Z}_p, \mathcal{O}_K/p) = \bigcup_{N \geq 1} \text{Maps}(\mathbb{Z}_p/p^N \mathbb{Z}_p, \mathcal{O}_K/p).$$

The union in (3.8) can be taken over just large integers. Lemma 3.4 suggests that at least for large N (depending on q), $f \in C(\mathbb{Z}_p, \mathcal{O}_K/p)$ factors through $\mathbb{Z}_p/p^N \mathbb{Z}_p$ when its nth q-Mahler coefficient vanishes for $n \geq p^N$, thus suggesting the more precise surjectivity of

$$\{(c_n)_{n=0}^{p^N-1} : c_n \in \mathcal{O}_K/p\} \to \text{Maps}(\mathbb{Z}_p/p^N \mathbb{Z}_p, \mathcal{O}_K/p)$$

given by (3.7) with the sum over $0 \leq n \leq p^N - 1$. (Note that by Lemma 3.4, $(x)_{n} \mod p$ is well-defined on $\mathbb{Z}_p/p^N \mathbb{Z}_p$ for N large and $n < p^N$.) The surjectivity (even bijectivity) of (3.9) follows from the argument that q-Mahler coefficients are unique.

We could have worked in $\mathcal{O}_K/(q-1, p)$ and not needed to use only large N at the end of the proof.

Here’s a fourth proof of Theorem 3.3, which like the second will yield some uniformity statements in q.

Proof. Define the numbers $c_n = c_{n, q}$ as in the statement of Theorem 3.3, so

$$f(m) = \sum_{n \geq 0} c_n \binom{m}{n}_q$$

for all nonnegative integers m. We thus only need to show that $|c_n| \to 0$. To do this we adapt Bojanic’s argument in [2].

Bojanic’s proof uses two different formulas for $(\Delta^nf)(m)$. First,

$$(\Delta^nf)(m) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} f(k + m).$$

Writing $(\Delta^nf)(m) = (\Delta^nE^m f)(0)$, we also have

$$E^m = (I + \Delta)^m = \sum_{j=0}^{m} \binom{m}{j} \Delta^j \Rightarrow (\Delta^nf)(m) = \sum_{j=0}^{m} \binom{m}{j} (\Delta^{n+j}f)(0).$$
For the q-analogue of these, (2.11) gives
\[
(\Delta_q^n f)(m) = \sum_{k=0}^{m} \binom{n}{k} (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k + m),
\]
while (2.13) gives
\[
E^m = \sum_{j=0}^{m} \binom{m}{j} \Delta_q^j \Rightarrow (\Delta_q^n f)(m) = (\Delta_q^n E^m f)(0) = \sum_{j=0}^{m} \binom{m}{j} q^{n(m-j)} (\Delta_q^{n+j} f)(0).
\]
Equating these formulas for $(\Delta_q^n f)(m)$ and isolating the $j = m$ term,
\[
c_{n+m} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k + m) - \sum_{j=0}^{m-1} \binom{m}{j} q^{m-j} c_{n+j}.
\]
With this formula we show $|c_n| \to 0$.

The $j = 0$ term is $q^{m} c_n = q^{m} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k)$, so
\[
c_{n+m} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} q^{(n-k)(n-k-1)/2} f(k + m) - q^{m} f(k) - \sum_{j=1}^{m-1} \binom{m}{j} q^{m-j} c_{n+j}.
\]
Scaling, we may assume $|f(x)| \leq 1$ for all $x \in \mathbb{Z}_p$, so $|c_n| \leq 1$ for all n.

Let $m = p^r$, for r to be determined. Then
\[
|c_{n+p^r}| \leq \max_{0 \leq k \leq n, 1 \leq j \leq p^r - 1} \left\{ |f(k + p^r) - q^{p^r} f(k)| \left| \binom{p^r}{j} q^{m-j} c_{n+j} \right| \right\}.
\]
For such j, $\left| \binom{p^r}{j} \right| q^j \leq |\Phi_{p^r}(q)|$ by (2.7).

Choose $\varepsilon > 0$. For large r, depending on f,
\[
|x - y| \leq \frac{1}{p^r} \Rightarrow |f(x) - f(y)| \leq \varepsilon.
\]
Thus $f(k + p^r) - q^{p^r} f(k) = f(k + p^r) - f(k) + f(k)(1 - q^{p^r})$, where the first term has size at most ε, while the second is at most $|q - 1| \max(|q - 1|, 1/p)^r$, which is $\leq \varepsilon$ for r large (depending on q).

By Lemma 3.4, $|\Phi_{p^r}(q)| = 1/p$ for all large r, depending on q. So there is a large r such that for all $n \geq 0$,
\[
|c_{n+p^r}| \leq \max_{1 \leq j \leq p^r - 1} (\varepsilon, (1/p)|c_{n+j}|) \leq \max(\varepsilon, 1/p).
\]
Thus $|c_n| \leq \max(\varepsilon, 1/p)$ for $n \geq p^r$. Replacing n by $n + p^r$ gives, for all $n \geq 0$,
\[
|c_{n+p^r}| \leq \max_{1 \leq j \leq p^r - 1} (\varepsilon, (1/p)|c_{n+p^r+j}|) \leq \max(\varepsilon, 1/p^2).
\]
So
\[
|c_n| \leq \max(\varepsilon, 1/p^2)
\]
for $n \geq 2p^r$. Repeating this $s - 1$ more times gives
\[
|c_n| \leq \max(\varepsilon, 1/p^s)
\]
for $n \geq sp^r$. Choosing s so large that $1/p^s \leq \varepsilon$ we have $|c_n| \leq \varepsilon$ if $n \geq sp^r$. \hfill \Box

Since the functions $E^x f$ are equicontinuous, this proof shows $\lim_{n \to \infty} \Delta^n_q f = 0$ uniformly in q for $|q - 1| \leq \delta < 1$.

For the reader who knows about q-derivatives, a second way to obtain the two formulas for $(\Delta^n_q f)(m)$ in the proof above is to make the proposed equality of these two expressions a universal polynomial identity, and establish it by q-differentiating the equation

$$\sum_{k \geq 0} f(k) \frac{X^k}{(k)_q!} = E_q(X) \sum_{n \geq 0} c_n \frac{X^n}{(n)_q!},$$

m times, dividing by $E_q(X)$, and then equating coefficients of X^n.

Although the q-Mahler expansion is treated above for a single function $f \in C(\mathbb{Z}_p, K)$, we will look in Section 5 at an example of a family of functions $f_q \in C(\mathbb{Z}_p, K)$ that depends continuously on q and consider the expansion of f_q relative to the q-Mahler basis.

4. Properties of q-Mahler Expansions

We now go through properties of q-Mahler expansions that are analogous to properties of Mahler expansions. Throughout this section, $|q - 1| < 1$.

First, note that $\{q \in K : |q - 1| < 1\}$ is a multiplicative group, unlike the parameter set that arises for q-series over C, the open unit disk. So we can also consider $1/q$-Mahler expansions.

Theorem 4.1. Let $|q - 1| < 1$, $f \in C(\mathbb{Z}_p, K)$ with q-Mahler coefficients $c_{n,q}$. Then

(i) $\sup_{x \in \mathbb{Z}_p} |f(x)| = \max_{n \geq 0} |c_{n,q}|$.

(ii) $f(x + 1) = \sum_{n \geq 0} (q^n c_{n,q} + c_{n+1,q}) (\frac{x}{q})^n q^n$.

(iii) $f(x + y) = \sum_{n \geq 0} (\Delta^n_q f)(y) (\frac{x}{n})_q^n q^n$.

(iv) $f(-x) = \sum_{n \geq 0} c_{n,q} (-1)^n q^{n(n+1)/2} (\frac{x}{n})_q^n$.

(v) $(x)_q f(x) = \sum_{n \geq 1} (n)_q (c_{n,q} + q^{n-1} c_{n-1,q}) (\frac{x}{n})_q^n$.

Proof. Part (i) follows from the q-Mahler Inversion Formula, or from the first proof of Theorem 3.3.

Part (ii) is a special case of part (iii) or can be done on its own. For part (iii), note $f(x + y) = (E^y f)(x)$ and the nth q-Mahler coefficient of $E^y f$ is $(\Delta^n_q (E^y f))(0) = (\Delta^n_q f)(y)$.

Part (iii) can also be proven by using the q-Vandermonde formula and an interchange of a double sum, which is Mahler’s original method at $q = 1$.

For part (iv), use (2.5). Note that the expansion given in (iv) is related to a $1/q$-Mahler expansion, which can be explicitly computed using Theorem 3.1.

For part (v), use $(n)_q (\frac{x}{n})_q = (x)_q (\frac{x}{n} - 1)_q$.

\hfill \Box

In light of (iii), $(\Delta^n_q f)(y)$ should be called the nth q-Mahler coefficient of f at y.

As with Mahler expansions, a function $\mathbb{Z}_p \to K$ with a pointwise representation as $\sum c_{n,q} (\frac{x}{n})_q$ must be continuous, since $c_{n,q} \to 0$ by looking at $x = -1$.

Let’s see how the difference operators act on q-Mahler expansions. For $q = 1$,

$$\Delta^m \left(\sum_{j \geq 0} c_j (\frac{x}{j})_j \right) = \sum_{j \geq 0} c_{m+j} (\frac{x}{j})_j,$$
but for general \(q \) (2.10) implies

\[
\Delta^m_q \left(\sum_{j=0}^{\infty} c_{j,q} \left(\frac{x}{j} \right) \right) = \sum_{j=0}^{\infty} c_{m+j,q} q^{m(x-j)} \left(\frac{x}{j} \right),
\]

which is not a \(q \)-Mahler expansion, because of the term \(q^m \). So using the operator \((\mathcal{D}_q^m f)(x) = q^{-m} (\Delta_q^m f)(x) \), we can write this instead as

\[
\mathcal{D}_q^m \left(\sum_{j=0}^{\infty} c_{j,q} \left(\frac{x}{j} \right) \right) = \sum_{j=0}^{\infty} c_{m+j,q} q^{-m} \left(\frac{x}{j} \right).
\]

The formula in part (v) of Theorem 4.1 can be extended to \((x_m)_q f(x) \), computing the \(n \)th \(q \)-Mahler coefficient by (2.14) and (4.1) for \(n \geq m \):

\[
\Delta^m_q \left(\left(\frac{x}{m} \right)_q f(x) \right) (0) = \sum_{k=0}^{n} \binom{n}{k} q^{\Delta^k_q \left(\left(\frac{x}{m} \right)_q \right) (0)} \Delta^{n-k}_q (f)(k)
\]

\[
= \binom{n}{m} q^{\Delta^{n-m}_q (f)(m)}
\]

\[
= \binom{n}{m} q^{(n-m)k} \left(\frac{m}{k} \right) c_{n-k,q}.
\]

We now discuss the relation between differentiability and \(q \)-Mahler expansions. When \(q = 1 \), Mahler shows in [18, Theorem 3], [19] that \(f \in C(\mathbb{Z}_p, K) \) is differentiable at \(y \) if and only if \(\lim_{m \to \infty} (\Delta^m f)(y)/m = 0 \) and then

\[
f'(y) = \sum_{m \geq 1} \frac{(\Delta^m f)(y)}{m} (-1)^{m-1}.
\]

The extension of this result to general \(|q - 1| < 1 \) involves the \(p \)-adic logarithm, whose properties we will summarize for the convenience of readers outside of number theory. These readers should notice in particular part (iv) below, which says the \(p \)-adic logarithm is locally an isometry.

Lemma 4.1. (i) The series \(\log_p(1+z) = \sum_{n \geq 1} (-1)^{n-1} z^n / n \) converges at \(z \in K \) if and only if \(|z| < 1 \).

(iii) If \(|u_1 - 1|, |u_2 - 1| < 1 \), then \(\log_p(u_1 u_2) = \log_p(u_1) + \log_p(u_2) \).

(iv) For \(|q - 1| < 1 \), \(\lim_{x \to q} \frac{q^x - 1}{x} = \log_p q \).

(v) If \(|u - v| < (1/p)^{1/(p-1)} \), then \(|\log_p u - \log_p v| = |u - v| \).

(vi) \(\log_p u = 0 \) if and only if \(u \) is a \(p \)-th power root of unity in \(K \).

(vii) If \(|\zeta - 1| < 1 \) and \(\zeta^m = 1 \), then \(\lim_{q \to \zeta} \frac{\log_p q}{\zeta} = \frac{1}{m} \).

Proof. i) \(|z|^n \leq |z^n/n| \leq n|z|^n \).

ii) See [12, Prop. 4.5.3].

iii) For \(x \neq 0 \), \((q^x - 1)/x = \sum_{n \geq 1} ((q - 1)^n/n)(x-1) \) and \((q - 1)^n/n \to 0 \) by (i).

iv) By (ii) we may take \(v = 1 \). The first term of the series for \(\log_p u \) is \(u - 1 \). For \(u \neq 1 \), all the remaining terms have size less than \(|u - 1| \) since for \(n \geq 2 \), the unique minimum of \(|n|^{1/(n-1)} = (1/p)^{\text{ord}(n)/(n-1)} \) occurs at \(n = p \).
v) For any integer \(r \), \(\log_p u = 0 \) if and only if \(\log_p (u^r) = 0 \). For \(r \) large, \(|u^r - 1| < (1/p)^{1/(p-1)} \), and by (iv) the only \(z \) with \(|z - 1| < (1/p)^{1/(p-1)} \) and \(\log_p z = 0 \) is \(z = 1 \).

vi) \((\log_p q)/((q^m - 1) = \log_p (q^z/(z^m - 1)) \) and \(\lim_{u \to 1} (\log_p u)/(u^m - 1) = 1/m \) since \(\lim_{u \to 1} (\log_p u)/(u - 1) = 1 \) from the definition of \(\log_p u \).

\[\square \]

Lemma 4.2. Let \(g : \mathbb{Z}_p \to K \) be continuous on \(\mathbb{Z}_p - \{-1\} \), with \(g(x) = \sum_{n \geq 0} c_n(x)q \) for \(x \neq -1 \). Then \(g \) is continuous at \(-1\) if and only if \(c_n \to 0 \), in which case \(g(-1) = \sum_{n \geq 0} c_n(-1)q \).

Proof. The “if” direction is clear. For “only if”, continuity of \(g \) at \(-1\) is the same as continuity of \(g \) on \(\mathbb{Z}_p \), by our hypothesis. Letting \(x \) run through the nonnegative integers, we see by the \(q \)-Mahler Inversion Formula that \(c_n \) is the \(n \)th \(q \)-Mahler coefficient of \(g \), so we're done by Theorem 3.3. \[\square \]

Here is the test for differentiability with \(q \)-Mahler expansions. Compare with formulas for the derivative in (4.2).

Theorem 4.2. Let \(f \in C(\mathbb{Z}_p, K) \).

(i) When \(q \) is not a (nontrivial) root of unity, \(f \) is differentiable at \(x \in \mathbb{Z}_p \) if and only if \(\lim_{m \to \infty} (\Delta_q^m f)(x)/(m)_q = 0 \), in which case

\[
f'(x) = \frac{\log_p q}{q - 1} \sum_{m \geq 1} (\Delta_q^m f)(x)(-1)^{m-1}q^{-m(m-1)/2}.
\]

(ii) When \(q \) is a root of unity of order \(p^N \) \((N \geq 0)\), \(f \) is differentiable at \(x \in \mathbb{Z}_p \) if and only if \(\lim_{m \to \infty} (\Delta_q^{p^N} f)(x)/(m)_q = 0 \), in which case

\[
f'(x) = \sum_{l \geq 1} \frac{\Delta_q^{p^N l} f)(x)}{p^N l}(-1)^{l-1}.
\]

Proof. (i) For \(h \neq 0 \), \(f(x + h) - f(x) = \sum_{m \geq 1} (\Delta_q^m f)(x) \binom{h}{m}_q \) by Theorem 4.1. Therefore

\[
\frac{f(x + h) - f(x)}{h} = \sum_{m \geq 1} (\Delta_q^m f)(x) \frac{1}{h} \binom{h}{m}_q
\]

\[
= \frac{(h)_q}{h} \sum_{m \geq 1} \frac{(\Delta_q^m f)(x)}{(m)_q} \binom{h - 1}{m - 1}.
\]

Since \((h)_q/h = (q^h - 1)/(h(q - 1))\) is continuous at all \(h \in \mathbb{Z}_p - \{0\}\) and its limit as \(h \to 0 \) is \(\frac{\log_q q}{q - 1} \neq 0 \) (even if \(q = 1 \), the function \(h/q \) is continuous and nowhere vanishing. So by Lemma 4.2 (with \(-1 \) as the variable), \(f'(x) \) exists if and only if \((\Delta_q^m f)(x)/(m)_q \to 0 \) and then \(f'(x) \) has the indicated form.

(ii) We consider only suitably small \(h \), say \(h = p^N z \) for \(z \in \mathbb{Z}_p \). For \(z \neq 0 \),

\[
\frac{f(x + p^N z) - f(x)}{p^N z} = \sum_{m \geq 1} (\Delta_q^m f)(x) \frac{1}{p^N z} \binom{p^N z}{m}_q,
\]

and by (3.1),

\[
\binom{p^N z}{m}_q = \begin{cases}
 \binom{z}{m/p^N}, & \text{if } p^N | m; \\
 0, & \text{if } p^N \not| m,
\end{cases}
\]

\[^{22} \]
\[
\frac{f(x + p^N z) - f(x)}{p^N z} = \sum_{l \geq 1} (\Delta_{q}^{p^N} f)(x) \frac{1}{p^N z} \left(\frac{z}{l} \right)
\]

\[
= \sum_{l \geq 1} \left(\frac{\Delta_{q}^{p^N} f(x)}{p^N l} \right) \left(\frac{z - 1}{l - 1} \right).
\]

Apply Lemma 4.2 (for \(q = 1 \)) with \(z - 1 \) as the variable.

Let’s unify both parts of this theorem. For \(q \) not a root of unity, \(\frac{\log_p q}{q-1} \frac{1}{(m^q)_{q^m}} = \frac{\log_p q}{q-1} \), while Lemma 4.1(vi) shows that for \(q \) a root of unity, \(\frac{(\log_p q)}{(q^m - 1)} \) equals \(1/m \) when \(q^m = 1 \) and equals 0 otherwise. Moreover, if \(q \) is a root of unity of order \(p^N \), then \(\left(\frac{1}{p^N} \right)^{-1} = (-1)^{l-1} \) for \(l \geq 1 \). So for any \(|q - 1| < 1 \), a root of unity or not, \(f \) is differentiable at \(x \) if and only if \(\lim_{m \to \infty} (\Delta_{q}^{m} f)(x) \frac{\log_p q}{q^m - 1} = 0 \), in which case

\[
f'(x) = \sum_{m \geq 1} (\Delta_{q}^{m} f) \left(x \right) \frac{\log_p q}{q^m - 1} \left(\frac{-1}{m - 1} \right).
\]

In particular,

\[
f'(0) = \sum_{m \geq 1} c_m q \left(\frac{\log_p q}{q^m - 1} \right) \left(\frac{-1}{m - 1} \right).
\]

When \(f(x) = \sum c_n \binom{x}{n} \) is differentiable and \(f' \) is continuous, Mahler [18, Theorem 4] gives the Mahler expansion for \(f' \):

\[
(4.3) \quad f'(x) = \sum_{n \geq 0} \left(\sum_{j \geq 1} c_{n+j} (-1)^{j-1} \right) \binom{x}{n}.
\]

For the \(q \)-analogues, we use the following \(q \)-analogue of [22, Prop. 47.4]:

\[
p^k \leq n < p^{k+1} \Rightarrow \left| \binom{x}{n}_q - \binom{y}{n}_q \right| \leq p^k |x - y|.
\]

Lemma 4.3. Let \(n \geq 1 \), \(p^k \neq n < p^{k+1} \).

(i) When \(q \) is not a (nontrivial) root of unity,

\[
\left| \binom{x}{n}_q - \binom{y}{n}_q \right| \leq \frac{1}{[p^{k}]_q} |(x)_q - (y)_q| \leq \frac{1}{[p^{k}]_q} \max(|x - 1|, 1/p)^{\text{ord}(x - y)}.
\]

(ii) When \(q \) is a root of unity of order \(p^N \) (\(N \geq 0 \)) and \(x \equiv y \mod p^N \),

\[
\left| \binom{x}{n}_q - \binom{y}{n}_q \right| \leq p^k |x - y|.
\]

Proof. i) Let \(x = y + z \), so by Theorem 3.1,

\[
\binom{x}{n}_q - \binom{y}{n}_q = \sum_{j=1}^{n} \binom{z}{j}_q \binom{z - 1}{j - 1}_q \binom{y}{n - j}_q q^{j(y + j - n)}.
\]
hence
\[\left| \binom{x}{n}_q - \binom{y}{n}_q \right| \leq \max_{1 \leq j \leq n} \left| \binom{z}{j}_q \right| = \max_{m \leq k} \frac{1}{(p^m)_q!} \left| (x)_q - (y)_q \right|. \]

ii) The difference vanishes if \(n < p^N \), so we may assume \(n \geq p^N \), i.e., \(k \geq N \). Let \(x \equiv y \equiv r \mod p^N \), \(0 \leq r \leq p^N - 1 \). Write \(x = p^N x' + r, y = p^N y' + r, n = p^N l + s, 0 \leq s \leq p^N - 1 \), so \(p^{k-N} \leq l < p^{k+1-N} \). Then \(\binom{x}{n}_q - \binom{y}{n}_q = \left(\binom{x'}{l}_q - \binom{y'}{l}_q \right) \left(\binom{r}{s}_q \right) \), so (knowing the case \(q = 1 \) already)
\[\left| \binom{x}{n}_q - \binom{y}{n}_q \right| \leq \left| \binom{x'}{l}_q - \binom{y'}{l}_q \right| \leq p^{k-N} |x' - y'| = p^k |x - y|. \]

\[\square \]

If \(|q - 1| < (1/p)^{1/(p-1)} \), then part (i) reduces to \(|\binom{x}{n}_q - \binom{y}{n}_q| \leq p^k |x - y| \), which (for \(q \in \mathbb{Z} \)) is a special case of [8, Theorem 4.5].

Here is the \(q \)-analogue of the Mahler expansion of \(f' \) when \(f' \) is continuous, extending (4.3).

Theorem 4.3. Let \(f(x) = \sum_{n \geq 0} c_{n,q}(\binom{x}{n})_q \) be a continuous function from \(\mathbb{Z}_p \) to \(K \) with a continuous derivative. The \(q \)-Mahler expansion of \(f' \) is
\[
f'(x) = \sum_{n \geq 0} \left(n c_{n,q} \log_p q + \sum_{j \geq 1} c_{n+j,q} \log_p q \frac{q^{j-1} - (j-1)_q}{q^j - 1} \binom{x}{n}_q \right).
\]

Proof. Apply \(\lim_{m \to \infty} (\Delta^m_q f)(x) \frac{\log q}{q^m - 1} = 0 \) at \(x = 0, 1, 2, \ldots \) to see \(\lim_{m \to \infty} c_{n+m,q} \frac{\log q}{q^m - 1} = 0 \) for all \(n \in \mathbb{N} \).

For \(y \neq 0 \),
\[
\frac{f(x + y) - f(x)}{y} = \sum_{n \geq 0} \left(\frac{\Delta^n_q f(y) - c_{n,q}}{y} \right) \binom{x}{n}_q.
\]

By (4.1),
\[
\frac{\Delta^n_q f(y) - c_{n,q}}{y} = c_{n,q} \left(\frac{q^m - 1}{y} \right) + \sum_{j \geq 1} c_{n+j,q} q^n (y-j) \frac{1}{y} \binom{j}{q}_q.
\]

How does each term behave as \(y \to 0 \)? The first term tends to \(c_{n,q} \log_p (q^n) = n c_{n,q} \log_p q \).

For the other terms,
\[
q^n (y-j) \frac{1}{y} \binom{j}{q}_q = q^n (y-j) \frac{q^y - 1}{y} \frac{1}{q^j - 1} \binom{y-1}{j-1}_q
\]
\[
\to \frac{\log_p q}{q^j - 1} \binom{y-1}{j-1}_q\]
\[
= \frac{\log_p q}{q^j - 1} \binom{y-1}{j-1}_q \binom{j}{q^j} = \binom{j}{q^j} = \left(\frac{q^j - 1}{q^j - 1} \right)_q.
\]
This calculation is valid only if \(q^j \neq 1 \), but the result is true if \(q^j = 1 \) by using (3.1). So we expect

\[
(4.4) \quad f'(x) = \sum_{n \geq 0} \left(n c_{n,q} \log_p q + \sum_{j \geq 1} c_{n+j,q} \log_p q \left(\frac{q^j}{q^j - 1} \right)^j \right) \left(\frac{x}{n} \right)_q.
\]

However, though we know \(\lim_{j \to \infty} c_{n+j,q} \log_p q \frac{q^j}{q^j - 1} = 0 \) for each \(n \), so the putative \(q \)-Mahler coefficients of \(f' \) in (4.4) do make sense, we don’t yet know

\[
\lim_{n \to \infty} \sum_{j \geq 1} c_{n+j,q} \log_p q \left(\frac{q^j}{q^j - 1} \right) \left(\frac{q^{-jn}}{q} \right)_q = 0,
\]

so convergence of the infinite series over \(n \) in (4.4) is not clear. To get around this, we use the idea of Mahler from his proof of Theorem 4.3 at \(q = 1 \), namely by the hypothesis of continuity of \(f' \) it suffices to verify (4.4) when \(x = m \in \mathbb{N} \). In this case the sum over \(n \) becomes finite:

\[
\frac{f(m+y) - f(m)}{y} = \sum_{n=0}^{m} \left(c_{n,q} \left(\frac{q^n - 1}{y} \right) + \sum_{j \geq 1} c_{n+j,q} q^{(n-j)} \left(\frac{y}{y} \right)_q \left(\frac{j}{j} \right)_q \right) \left(\frac{m}{n} \right)_q.
\]

The outer sum is finite, so to verify termwise evaluation of \(\lim_{y \to 0} \) all we need to do is check

\[
\lim_{y \to 0} c_{n+j,q} \frac{1}{y} \left(\frac{y}{y} \right)_q = c_{n+j,q} \log_p q \left(\frac{-1}{q^{j-1}} \right)_q
\]

uniformly in \(j \) (but perhaps not in \(q \) or \(n \)).

Case 1: \(q \) is a root of unity of order \(p^N \), so \(\lim_{j \to \infty} c_{n+j,q} / j = 0 \), as \(j \) runs through multiples of \(p^N \).

If \(q^j \neq 1 \), then \(\left(\frac{y}{y} \right)_q = 0 \) for \(|y| \leq 1/p^N \).

If \(q^j = 1 \), say \(j = p^N j' \), then

\[
\lim_{y \to 0} c_{n+j,q} \frac{1}{y} \left(\frac{y}{y} \right)_q = \lim_{z \to 0} c_{n+j,q} \frac{1}{j'} \left(\frac{z-1}{j'-1} \right)
\]

We consider the difference

\[
c_{n+j,q} \frac{1}{j'} \left(\frac{z-1}{j'-1} \right) - c_{n+j,q} \frac{1}{j} \left(\frac{-1}{j-1} \right)_q = \frac{c_{n+j,q}}{j} \left(\left(\frac{z-1}{j'-1} \right) - \left(\frac{-1}{j-1} \right) \right).
\]

Choose a power of \(p \), say \(p^r \), such that \(|c_{n+j,q} / j| \leq \delta \) for \(j \geq p^r \) (and \(p^N |j| \)). For \(j < p^r \), \((z^{-1}) - (j^{-1})\) has size at most \(p^{-1} |z| \) by Lemma 4.3.

Therefore

\[
\lim_{y \to 0} c_{n+j,q} \frac{1}{y} \left(\frac{y}{y} \right)_q = c_{n+j,q} \log_p q \left(\frac{-1}{q^{j-1}} \right)_q,
\]

uniformly in \(j \).

Case 2: \(q \) is not a root of unity.

So \(\log_p q \neq 0 \), hence \(\lim_{j \to \infty} \frac{c_{n+j,q}}{q^j-1} = 0 \).
Since
\[
c_{n+j,q} \frac{1}{y} \left(\frac{y}{j} \right)_q - c_{n+j,q} \frac{\log_p q}{q^j - 1} \left(\frac{y}{j} - 1 \right)_q = c_{n+j,q} \left(\frac{q^j - 1}{y} \left(\frac{y}{j} - 1 \right)_q - \log_p q \left(\frac{y}{j} - 1 \right)_q \right)
\]

\[
= \frac{c_{n+j,q}}{q^j - 1} \left(\frac{q^j - 1}{y} - \log_p q \right) \left(\frac{y}{j} - 1 \right)_q + \frac{c_{n+j,q} \log_p q}{q^j - 1} \left(\left(\frac{y}{j} - 1 \right)_q - \left(\frac{-1}{j} \right)_q \right),
\]

we need to show that
\[
\lim_{y \to 0} \frac{c_{n+j,q}}{q^j - 1} \left(\left(\frac{y}{j} - 1 \right)_q - \left(\frac{-1}{j} \right)_q \right) = 0
\]
uniformly in \(j \). For \(\delta > 0 \), choose \(p^r \) so \(|c_{n+j,q}/(q^j - 1)| \leq \delta \) for \(j \geq p^r \). For \(j < p^r \), Lemma 4.3 implies
\[
\left| \left(\frac{y}{j} - 1 \right)_q - \left(\frac{-1}{j} \right)_q \right| \leq \frac{1}{(p^r-1)^2} \max(|q - 1|, 1/p)^{\text{ord}(y)},
\]
which is \(\leq \delta \) for \(\text{ord}(y) \) large enough.

So for \(f' \) continuous and \(q \) not a root of unity,
\[
f'(x) = \log_p q \left(\sum_{n \geq 0} \left((q-1)nc_n,q + \sum_{j \geq 1} c_{n+j,q}(-1)^{j-1}q^{-j(j-1)/2-jn} \right) \right) \left(\frac{x}{n} \right)_q,
\]
while for \(q \) a root of unity of order \(p^N \),
\[
f'(x) = \sum_{n \geq 0} \left(\sum_{j \geq 1 \mod p^N} c_{n+j,q}(-1)^{j/p^N-1} \right) \left(\frac{x}{n} \right)_q.
\]

The Mahler expansion characterizes analyticity: \(\sum c_n(x) \) is analytic if and only if \(c_n/n! \to 0 \) [22, Theorem 54.4]. For example, the function \(q^x \) is an analytic function of \(x \) if and only if \(|q - 1| < (1/p)^{1/(p-1)} \), in which case its \(m \)th Taylor coefficient at \(x = 0 \) is \((\log_p q)^m / m! \). For other \(q \), \(|q^p - 1| < (1/p)^{1/(p-1)} \) for \(r \) large, so \((x)_q \) is locally analytic.

To describe analyticity in terms of \(q \)-Mahler expansions, we only consider \(|q - 1| < (1/p)^{1/(p-1)} \), since this is the region of \(q \) where the functions \((x)_q \) are all analytic. For such \(q \), \(|(x)_q| = |x| \). In particular, \(|n!| = |(n)_q!| \).

Lemma 4.4. Let \(a_1, b_1, \ldots, a_m, b_m \in K \) with \(|a_j|, |b_j| \leq 1 \). Then
\[
|a_1a_2 \cdots a_n - b_1b_2 \cdots b_n| \leq \max |a_j - b_j|.
\]

Proof. In \(\mathcal{O}_K/(a_1 - b_1, \ldots, a_n - b_n) \), \(a_1 \cdots a_n \equiv b_1 \cdots b_n \).

Theorem 4.4. For \(|q - 1| < (1/p)^{1/(p-1)} \), \(\sum c_n(x)_q \) is analytic if and only if \(c_n/(n)_q \to 0 \).

Proof. As with the first proof of Theorem 3.3, we’ll get the result for general \(q \) from the case \(q = 1 \) by Lemma 3.2.
Let \(A(\mathbb{Z}_p, K) = \{ f(x) = \sum a_n x^n : a_n \in K, a_n \to 0 \} \) be the analytic functions from \(\mathbb{Z}_p \) to \(K \). It is a \(K \)-Banach space under the norm \(||f|| = \max |a_n| \). (This norm does not generally coincide with the sup-norm over \(\mathbb{Z}_p \), e.g., \(||x^p - x|| = 1 \), but \(||x^p - x||_{\text{sup}} = 1/p \).)

Writing
\[
\sum a_n x^n = \sum b_n x(x-1) \cdots (x-n+1) = \sum n!b_n \binom{x^n}{n},
\]
we see \(a_n - b_n \in \mathbb{Z}[[b_{n+1}, b_{n+2}, \ldots]] \), so \(\max |a_n| = \max |b_n| \). Therefore the norm in \(A(\mathbb{Z}_p, K) \) of an analytic function written as \(\sum c_n \binom{x^n}{n} \) is \(\max |c_n/n!| \). In other words, the functions \(n!(\binom{x}{n}) = x(x-1) \cdots (x-n+1) \) are a basis of \(A(\mathbb{Z}_p, K) \).

The theorem amounts to showing the functions \((n)_q \binom{x}{n} = (x)_q(x-1)_q \cdots (x-n+1)_q \) are an orthonormal basis of \(A(\mathbb{Z}_p, K) \). To show this we compare these functions to \(n!(\binom{x}{n}) \) in order to use Lemma 3.2. By Lemma 4.4, it suffices to find an \(\varepsilon < 1 \) such that \(||(x-j)_q - (x-j)|| \leq \varepsilon \) for all \(j \in \mathbb{N} \). Well,

\[
(x-j)_q - (x-j) = \left(\frac{\log_p q}{q-1} - 1 \right) (x-j) + \frac{\log_p q}{q-1} \sum_{r \geq 2} \frac{\log_p q}{r!} (x-j)^r.
\]

We want a uniform upper bound < 1 on the Taylor coefficients. (The definition of the norm on \(A(\mathbb{Z}_p, K) \) is based on a Taylor expansion around 0, but recentering the series at \(j \) does not affect the maximum size of the Taylor coefficients.)

The coefficient of \(x-j \) on the right side of (4.5) is
\[
\frac{\log_p q}{q-1} - 1 = \sum_{n \geq 2} \frac{(q-1)^{n-1}}{n} (-1)^{n-1}.
\]

Note \(|(q-1)^{n-1}/n| \leq |(q-1)^{n-1}/n!| \). By Lemma 4.1(iv), the coefficients of the higher powers of \(x-j \) in (4.5) have size
\[
\left| \frac{\log_p q}{q-1} \binom{(\log_p q)^{r-1}}{r!} \right| = \left| \frac{(q-1)^{r-1}}{r!} \right|.
\]

So provided \(\sup_{r \geq 2} |(q-1)^{r-1}/r!| < 1 \), we’re done. Letting \(s_p(r) \) be the sum of the base \(p \) digits of \(r \),
\[
\left| \frac{(q-1)^{r-1}}{r!} \right| = |q-1|^{r-1}p^{(r-s_p(r))/(r-1)} \leq |q-1|^{r-1}p^{(r-1)/(r-1)} \leq |q-1|p^{1/(p-1)}.
\]

\(\square \)

Corollary 4.1. For \(|q-1| < (1/p)^{1/(p-1)} \) and \(||t|| < 1 \), \((1+t)^{x\bar{q}} \) is analytic on \(\mathbb{Z}_p \) if and only if \(||t|| < (1/p)^{1/(p-1)} \).

We now connect the work here with that of van Hamme and Verdooldt. They consider the following. Let \(a, q \in \mathbb{Z}_p^* \), perhaps \(q \neq 1 \mod p \), and assume \(q \) is not a root of unity. Let \(V_q \) denote the closure of the set \(\{ aq^n \}_{n \geq 0} \) in \(\mathbb{Z}_p \). It is a compact subset of \(\mathbb{Z}_p \) and open since \(q \) is not a root of unity. As \(q \to 1 \), \(V_q \) “shrinks” to \(\{ a \} \). In [23], van Hamme proves every continuous function \(f : V_q \to \mathbb{Q}_p \) has the form
\[
f(x) = \sum_{n \geq 0} \frac{(D^n f)(a)}{(n)_q!} (x-a)^{(n)_q}
\]
for \(x \in V_q \), where \((D_q f)(x) := (f(qx) - f(x))/(qx - x)\) is the \(q \)-derivative, \(D_q^n \) its \(n \)th iterate. Note that the domain \(V_q \) of the function depends on \(q \) and \(a \). Having \((n)_q! \) in the denominator of (4.6) keeps \(q \) away from roots of unity.

When \(q \in 1 + p\mathbb{Z}_p \) and is not a root of unity, (4.6) is essentially a \(q \)-Mahler expansion. Indeed, in this case the elements of \(V_q \) have the form \(x = aq^y \) for unique \(y \in \mathbb{Z}_p \), in which case

\[
\frac{(D_q^n f)(a)}{(n)_q!}(x - a)^{(n)_q} = \frac{(D_q^n f)(a)}{(n)_q!}(aq^y - a)^{(n)_q} = (D_q^n f)(a) \cdot a^n(q - 1)^n\frac{q^n y - q^{n-1}}{q} \cdots \frac{q^{n-1} - 1}{q - 1} = (D_q^n f)(a) \cdot a^n(q - 1)^n\frac{y}{n!}.
\]

This last expression has an alternate form by [23, Lemma 3]:

\[
(D_q^n f)(a) \cdot a^n(q - 1)^n\frac{y}{n!} = \sum_{k=0}^{n} (-1)^k q^{k(k-1)/2} \binom{n}{k} \binom{y}{n}.
\]

This goes back to Jackson [14, Eq. 12].

Letting \(g(y) = f(aq^y) \) be the pullback of \(f \) to a continuous function on \(\mathbb{Z}_p \), van Hamme's expansion (4.6) becomes

\[
g(y) = \sum_{n \geq 0} \left(\sum_{k=0}^{n} (-1)^k q^{k(k-1)/2} \binom{n}{k} \binom{y}{n-k} \right) f(aq^{n-k}),
\]

which is the \(q \)-Mahler expansion of \(g \). But \(q \)-Mahler expansions do allow \(q \) to be a root of unity, as well as to lie outside of \(\mathbb{Q}_p \), though subject to the restriction \(|q| < 1 \). In [6], a \(q \)-analogue of Mahler expansions will be described for \(q \in K, |q| = 1 \), that will reduce to van Hamme's expansion when \(q \in \mathbb{Z}_p^* \) and \(q \) is not a root of unity.

In [24, Theorem 3], van Hamme gives a remainder formula for the Mahler expansion. For a complete extension field \(K/\mathbb{Q}_p \) and a continuous function \(f : \mathbb{Z}_p \rightarrow K \) with Mahler coefficients \(c_n \),

\[
(4.7) \quad f(x) = c_0 + c_1 \left(\frac{x}{1} \right) + \cdots + c_n \left(\frac{x}{n} \right) + \Delta^{n+1} f \ast^{t} \left(\frac{\cdot}{n} \right),
\]

where \(\ast^{t} \) is a modified convolution of continuous functions that we now recall. For two continuous functions \(g \) and \(h \) from \(\mathbb{Z}_p \) to \(K \), let \(g \ast^{t} h : \mathbb{Z}_p \rightarrow K \) be the \(p \)-adic interpolation to \(\mathbb{Z}_p \) of the function \(\mathbb{N} \rightarrow K \) given by \(n \mapsto \sum_{k=0}^{n} g(k)h(n-k) \). (For a proof that this sequence interpolates, see [22, Exer. 34.E, Exer. 52.J] or [24, Lemma 1].) The operation \(\ast^{t} \) is an associative, commutative convolution on \(C(\mathbb{Z}_p, K) \) and \(|g \ast^{t} h|_{sup} \leq |g|_{sup} |h|_{sup} \). By definition, \((g \ast^{t} h)(x) := (g \ast h)(x - 1) \). Since \(\Delta^{n+1} f \rightarrow 0 \) in \(C(\mathbb{Z}_p, K) \), (4.7) is a Mahler expansion with remainder.

Here is the \(q \)-Mahler expansion with remainder.

Theorem 4.5. Choose \(q \in K \) with \(|q - 1| < 1 \) and \(f \in C(\mathbb{Z}_p, K) \). Letting \(c_{0,q}, c_{1,q}, \ldots \) be the \(q \)-Mahler coefficients of \(f \),

\[
f(x) = c_{0,q} + c_{1,q} \left(\frac{x}{1} \right) + \cdots + c_{n,q} \left(\frac{x}{n} \right) + \Delta^{n+1} f \ast^{t} \left(\frac{\cdot}{n} \right),
\]

28
Our proof below will be a translation of Verdooldt’s ideas in [25], where she proves a version of this expansion with remainder for functions on the sets V_q. To simplify the comparison with [25], we write the variable in \mathbb{Z}_p as y.

For $y \in \mathbb{Z}_p$, set $\mathcal{U}_n(y) = q^{ny}$, so $\mathcal{U}_0(y) = \left(\begin{array}{c} y \\ 0 \end{array}\right)_q$. (The functions $\mathcal{U}_n = \mathcal{U}_{n,q}$ were already used in Section 3.)

Lemma 4.5. For any $n \geq 0$, $f = f(0)\mathcal{U}_n + (E - q^n)f *' \mathcal{U}_n$.

Proof. We evaluate the right hand side at $y = m \in \mathbb{Z}^+$:

\[
(E - q^n)f *' \mathcal{U}_n(m) = \sum_{i=0}^{m-1} (f(i + 1) - q^n f(i)) q^{n(m-1-i)}
\]

\[
= \sum_{i=0}^{m-1} f(i + 1)q^{n(m-(i+1))} - \sum_{i=0}^{m-1} f(i)q^{n(m-i)}
\]

\[
= f(m) - f(0)q^m.
\]

Lemma 4.6. For all n,

\[
\mathcal{U}_{n+1} *' \left(\begin{array}{c} m \\ n \end{array}\right)_q = \left(\begin{array}{c} m+1 \\ n+1 \end{array}\right)_q.
\]

Proof. Using the first recursion in (2.3),

\[
\left(\begin{array}{c} m \\ n+1 \end{array}\right)_q = \left(\begin{array}{c} m-1 \\ n \end{array}\right)_q + q^{n+1}\left(\begin{array}{c} m-1 \\ n+1 \end{array}\right)_q
\]

\[
= \left(\begin{array}{c} m-1 \\ n \end{array}\right)_q + q^{n+1}\left(\begin{array}{c} m-2 \\ n \end{array}\right)_q + q^{2(n+1)}\left(\begin{array}{c} m-2 \\ n+1 \end{array}\right)_q
\]

\[
= \sum_{i=0}^{m-1} \left(\begin{array}{c} m-1-i \\ n \end{array}\right)_q q^{i(n+1)}
\]

\[
= \mathcal{U}_{n+1}(y) * \left(\begin{array}{c} y \\ n \end{array}\right)_q \text{ at } y = m-1
\]

\[
= \mathcal{U}_{n+1}(y) *' \left(\begin{array}{c} y \\ n \end{array}\right)_q \text{ at } y = m.
\]

Now we prove Theorem 4.5.

Proof. For $y \in \mathbb{Z}_p$,

\[
f(y) = f(0)\mathcal{U}_0 + (E - I)f *' \mathcal{U}_0
\]

\[
= f(0) + \Delta f *' \mathcal{U}_0
\]

\[
= f(0) + ((\Delta f)(0)\mathcal{U}_1 + (E - q)\Delta f *' \mathcal{U}_1) *' \mathcal{U}_0 \text{ by Lemma 4.5}
\]

\[
= f(0) + (\Delta f)(0)(\mathcal{U}_1 *' \mathcal{U}_0) + \Delta^2 f *' (\mathcal{U}_1 *' \mathcal{U}_0)
\]

\[
= f(0) + (\Delta f)(0)\left(\begin{array}{c} y \\ 1 \end{array}\right)_q + \Delta^2 f *' \left(\begin{array}{c} y \\ 1 \end{array}\right)_q \text{ by Lemma 4.6}.
\]
Assuming
\[f(y) = f(0) + (\Delta_q f)(0) \left(\frac{y}{1} \right)_q + \cdots + (\Delta_q^n f)(0) \left(\frac{y}{n} \right)_q + \Delta_q^{n+1} f \circ \left(\frac{\cdot}{n} \right)_q, \]
apply Lemma 4.5 at \(n + 1 \) with the function \(\Delta_q^{n+1} f \), and then use Lemma 4.6. \(\square \)

It is left to the reader to extend the \(q \)-Mahler expansion and some properties of it in this section to the case when \(K \) is a complete field of characteristic \(p \) or a complete commutative \(\mathbb{Z}_p \)-algebra.

In addition to the \(q \)-numbers and \(q \)-binomial coefficients we have used, the study of quantum groups has focused attention on the \(q \)-analogues
\[[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \cdots + \frac{1}{q^{n-3}} + \frac{1}{q^{n-1}} = \frac{1}{q^{n-1}} (n)_q^2, \]
\[[n]_q! := [n]_q [n-1]_q \cdots [1]_q = \frac{1}{q^{n(n-1)/2}} (n)_q^2!, \]
and
\[\left[\begin{array}{c} m \\ n \end{array} \right]_q := \left[\begin{array}{c} m \\ n \end{array} \right] [m-1]_q \cdots [m-n+1]_q = \frac{1}{q^{m-n}} \left(\begin{array}{c} m \\ n \end{array} \right)_q. \]
The extra property these have is invariance when \(q \) is replaced by \(1/q \).

All the properties of \(\binom{m}{n} \) have analogues for \(\left[\binom{m}{n} \right]_q \), such as
\[\left[-n \right]_q = -[n]_q, \quad [n]_{1/q} = [n]_q, \quad [mn]_q = [m]_q [n]_q^m, \quad \left[\begin{array}{c} m \\ n \end{array} \right]_q \in \mathbb{Z}[q, 1/q], \]
\[\left[\begin{array}{c} -m \\ n \end{array} \right]_q = (-1)^n \left[\begin{array}{c} m + 1 - n \\ n \end{array} \right]_q, \quad \left[\begin{array}{c} m_1 + m_2 \\ k \end{array} \right]_q = \sum_{i+j=k} \left[\begin{array}{c} m_1 \\ i \end{array} \right]_q \left[\begin{array}{c} m_2 \\ j \end{array} \right]_q q^{m_2 i - m_1 j}. \]
That \(\left[\binom{m}{n} \right]_q \) is related to \(\binom{m}{n} \) means there is a different formula for \(\left[\binom{m}{n} \right]_q \) in the case when \(\zeta \) is an odd or even order root of unity.

For \(|q - 1| < 1 \), we get a continuous extension \(\left[x \right]_q = (1/q^n \frac{x}{n}) \left(\frac{x}{n} \right)_q^2 \), and \(\left[\frac{x}{n} \right]_q - \left(\frac{x}{n} \right) \) is \(|q - 1| \), so the functions \(\left[x \right]_q \) form an orthonormal basis of \(C(\mathbb{Z}_p, K) \).

It is left to the reader to formulate all the results of this paper so far in this context. As an example of some differences, let \(\mathcal{E}_q(X) = \sum X^n/[n]_q! \). Then \(\mathcal{E}_{1/q}(X) = \mathcal{E}_q(X) \) and \(\mathcal{E}_q(X) \mathcal{E}_q(Y) \) equals
\[\sum_{n \geq 0} \frac{1}{[n]_q!} \left(\sum_{m=0}^n \left[\begin{array}{c} n \\ m \end{array} \right]_q X^{n-m} Y^m \right) = \sum_{n \geq 0} \left(\frac{X + Y/q^{n-1}}{[n]_q!} \right) \left(X + Y/q^{n-3} \right) \cdots \left(X + q^{n-1} Y \right), \]
where powers of \(q \) in consecutive terms of the product on the right hand side differ by two.

Set
\[(X + Y)^{[n]}_q := (X + Y/q^{n-1}) \cdots (X + q^{n-1} Y), \]
so \(\mathcal{E}_q(X) \mathcal{E}_q(Y) = \sum_{n \geq 0} (X + Y)^{[n]}_q/[n]_q! \) and \((X + Y)^{[m+n]} q^{[m]}_q q^{[n]}_q = (X + q^n Y)^{[m]}_q (X + Y/q^m)^{[n]}_q \).

Note \((X - X)^{[n]}_q \neq 0 \) if \(n \) is even. In particular, \(\mathcal{E}_q(X) \mathcal{E}_q(-X) \neq 1 \), and there doesn’t seem to be a simple formula for the coefficients of \(\mathcal{E}_q(X)^{-1} \). For example,
\[\mathcal{E}_q(X)^{-1} = 1 - X + \frac{q^2 - q + 1}{q^2 + 1} X^2 - \frac{q^6 - 2q^5 + 2q^4 - q^3 + 2q^2 - 2q + 1}{(1 + q^2)(1 + q^2 + q^4)} X^3 + \cdots, \]
and the numerator of the coefficient of X^3 is irreducible in $\mathbb{Z}[q]$.

We define polynomials $\mu_n(q)$ by $E_q(X) = \sum_{n \geq 0} \mu_n(q)X^n/[n]_q!$, using the notation μ by analogy with combinatorial inversion formulas. Then

$$f(x) = \sum_{n \geq 0} C_{n,q} \left[\frac{x}{n} \right] \iff C_{n,q} = \sum_{k=0}^{n} \binom{n}{k} \mu_{n-k}(q) f(k).$$

5. The p-adic q-Gamma function

To illustrate the possibility of using q-Mahler expansions with a family of functions depending continuously on a parameter, we consider Morita’s p-adic Gamma function Γ_p and its q-analogue $\Gamma_{p,q}$ as defined by Koblitz.

For a nonnegative integer n, Morita [20] defines

$$\Gamma_p(n + 1) := (-1)^{n+1} \prod_{\substack{1 \leq j \leq n \\ (p,j) = 1}} j = (-1)^{n+1} n! \frac{1}{p^{n/n!} [n/p]!}$$

for $n \geq 1$ and $\Gamma_p(1) = -1$. Morita’s proof that Γ_p is p-adically continuous is based on congruence properties of the sequence $\{\Gamma_p(n+1)\}$. For our treatment here, it is Barsky’s proof [1] of the continuity which is of primary interest. Barsky’s method is based on the identity

$$\sum_{n \geq 0} \frac{(-1)^{n+1} \Gamma_p(n + 1)}{n!} X^n = (1 + X + \cdots + X^{p-1})e^{X/p},$$

which implies that the Mahler coefficients $\tau_p(n)$ (say) of the sequence $\Gamma_p(n + 1)$ satisfy

$$\sum_{n \geq 0} \frac{(-1)^{n+1} \tau_p(n)}{n!} X^n = (1 + X + \cdots + X^{p-1})e^{X+X/p}.$$}

Writing $e^{X+X/p} = \sum_{n \geq 0} (b_{p,n}/n!) X^n$, estimates of Dwork [17, p. 320] imply $b_{p,n} \to 0$ p-adically as $n \to \infty$, so $\tau_p(n) \to 0$ as $n \to \infty$. Therefore Γ_p extends continuously from \mathbb{N} to \mathbb{Z}_p.

We recall Dwork’s proof that $b_{p,n} \to 0$. Multiply $\exp(X + X^p/p)$ by the additional terms $\exp(X^{p^j/p^j})$ for $j \geq 2$ and then remove them:

$$e^{X+X^p/p} = \exp \left(\sum_{j \geq 0} \frac{X^{p^j}}{p^j} \right) \prod_{j \geq 2} e^{-X^{p^j/p^j}}.$$

We want to show $\exp(X + X^p/p)$ is in the space of p-adic divided power series $\sum c_n X^n/n!$ where $c_n \to 0$. Such series form the Leopoldt space. It is a Banach algebra when we norm such series by $\sup |c_n|$. Since $\exp(\sum_{j \geq 0} X^{p^j/p^j})$ is the Artin–Hasse series, which has \mathbb{Z}_p-coefficients, it is a Leopoldt series. (Any series with bounded coefficients is a Leopoldt series.) By a direct calculation, $\exp(\pm X^{p^j/p^j})$ is a Leopoldt series and $\to 1$ in the Leopoldt norm as $j \to \infty$. So by completeness the right side of (5.3) is a Leopoldt series. Thus $b_{p,n} \to 0$.

For $|q - 1| < 1$, the q-analogue $\Gamma_{p,q}$ of Γ_p is defined by Koblitz [16] by

$$\Gamma_{p,q}(n + 1) := (-1)^{n+1} \prod_{\substack{1 \leq j \leq n \\ (p,j) = 1}} q^{j-1} - 1 = (-1)^{n+1} \prod_{\substack{1 \leq j \leq n \\ (p,j) = 1}} (1 + q + \cdots + q^{j-1})$$

31
for \(n \geq 1 \) and \(\Gamma_{p,q}(1) = -1 \). For fixed \(q \) with \(0 < |q - 1| < 1 \), Koblitz shows that the sequence \(\Gamma_{p,q}(n + 1) \) \(p \)-adically interpolates to \(\mathbb{Z}_p \) by comparing \(\Gamma_{p,q} \) with \(\Gamma_p \), whose continuity is already known. There are alternate proofs of the interpolation for \(\Gamma_{p,q} \) (cf. [5]), but we would like to have available a proof of the interpolation based on Barsky’s method, proceeding as follows.

For any integer \(j \), \((j)_{q_2} \equiv (j)_{q_1} \mod q_1 - q_2 \), so \(|\Gamma_{p,q_1}(n + 1) - \Gamma_{p,q_2}(n + 1)| \leq |q_1 - q_2| \). Thus \(p \)-adic interpolation of \(\Gamma_{p,q}(n + 1) \) for general \(q \) will follow from that for a dense set of \(q \). So we may suppose \(q \) is not a root of unity, making \((n)_q \) nonzero for all \(n \).

In this case, which we may assume we are in from now on,

\[
\Gamma_{p,q}(n + 1) = \frac{(-1)^{n+1} (n)_q}{\prod_{k \leq [n/p]} (pk)_q} = \frac{(-1)^{n+1} (n)_q}{(p)^{n/p}([n/p])!_q}.
\]

Following Barsky, we consider

\[
\sum_{n \geq 0} \frac{(-1)^{n+1} \Gamma_{p,q}(n + 1)}{(n)_q} X^n = \sum_{n \geq 0} \frac{1}{(p)^{n/p}([n/p])!_q} X^n
= \sum_{r=0}^{p-1} \sum_{m \geq 0} \frac{1}{(p)^{m/n}} X^{mn+r}
= (1 + X + \cdots + X^{p-1}) \sum_{m \geq 0} \frac{(X^{p/(p)_q})^m}{(m)_q!_q}
= (1 + X + \cdots + X^{p-1}) E_{q^p}(X^{p/(p)_q})
\]

Let \(\tau_{p,q}(n) \) be the \(n \)th \(q \)-Mahler coefficient of the sequence \(\Gamma_{p,q}(n + 1) \). We want to show \(\tau_{p,q}(n) \to 0 \) as \(n \to \infty \). Continuing with the above calculations, we obtain

\[
\sum_{n \geq 0} \frac{(-1)^{n+1} \tau_{p,q}(n)}{(n)_q} X^n = (1 + X + \cdots + X^{p-1}) E_{q^p}(-X)^{-1} E_{q^p}(X^{p/(p)_q})
= (1 + X + \cdots + X^{p-1}) E_{1/q}(X) E_{q^p}(X^{p/(p)_q}).
\]

Comparing this with (5.2) shows the \(q \)-analogue of \(e^{X+X^n/p} \) is apparently

\[
E_{1/q}(X) E_{q^p}(X^{p/(p)_q}) = (E_{1/q}(X) E_{1/q}(-X)) \cdot E_q(X) E_{q^p}(X^{p/(p)_q}).
\]

By the \(q \)-Mahler theorem, the existence of a \(p \)-adic interpolation for \(\Gamma_{p,q}(n + 1) \) is thus equivalent to the fact that, when we write

\[
E_{1/q}(X) E_{q^p}(X^{p/(p)_q}) = \sum_{n \geq 0} b_{p,q,n} \frac{X^n}{(n)_q!_q},
\]

the sequence \(b_{p,q,n} \) tends to 0 as \(n \to \infty \). This suggests looking at a \(q \)-Leopoldt space, namely the \(q \)-divided power series \(\sum c_n X^{n/(n)_q} \) where \(c_n \to 0 \). By a direct calculation for \(j \geq 2 \), \(E_{q^{p^j}}(X^{p^j/(p^j)_q}) \) is a unit in the \(q \)-Leopoldt space, so carrying out a \(q \)-version of Barsky’s argument comes down to checking that a \(q \)-analogue of the Artin–Hasse series,

\[
E_{1/q}(X) \prod_{j \geq 1} E_{q^{p^j}}(X^{p^j/(p^j)_q}),
\]

(5.4)
is in the q-Leopoldt space. (Since $E_{1/q}(X)E_{1/q}(-X)$ is a unit in the q-Leopoldt space, we can replace $E_{1/q}(X)$ with $E_q(X)$ in (5.4) without affecting the property of being or not being a q-Leopoldt series.)

Here we are left with a gap, as we do not see how to establish (5.4) is a q-Leopoldt series without referring to the preexisting fact that $\Gamma_{p,q}(n + 1)$ interpolates. Is there a method of analyzing (5.4) without using anything about $\Gamma_{p,q}$, and ideally also not relying on the case $q = 1$ first? It may be possible to carry out this task more easily when $|q - 1| < (1/p)^{1/(p-1)}$, but ultimately there should be an argument valid for $|q - 1| < 1$.

References