1. Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

Proof. Since m and n are coprime, then there exists some $s, t \in \mathbb{Z}$ such that

$$ms + nt = 1.$$

Now for any simple tensor $x \otimes y \in (\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z})$, we have

$$x \otimes y = 1 \cdot (x \otimes y)$$

$$= (ms + nt) \cdot (x \otimes y)$$

$$= (ms) \cdot (x \otimes y) + (nt) \cdot (x \otimes y)$$

$$= (msx) \otimes y + (ntx) \otimes y$$

$$= (msx) \otimes y + x \otimes (tnt)$$

$$= 0 \otimes y + x \otimes 0$$

$$= 0 + 0$$

$$= 0.$$

Since $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z})$ is generated by simple tensors, then we have

$$(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0.$$

2. Let A be a ring, a an ideal, M an A-module. Show that $(A/a) \otimes_A M$ is isomorphic to M/aM.

Proof. Define $f : A/a \times M \to M/aM$ as: for all $x + a \in A/a$ and $m \in M$, we have

$$f(x + a, m) = xm + aM.$$

Claim I: f is well defined.

In fact, for all $x + a, y + a \in A/a$ and $m \in M$ such that $x + a = y + a$, then $x - y \in a$. Hence $xm = ym = (x - y)m \in aM$, in particular,

$$xm + aM = ym = aM.$$

That is, $f(x + a, m) = f(y + a, m)$. So f is well defined.

Claim II: f is an A-bilinear map.

In fact, for all $z \in A$, $x + a, y + a \in A/a$ and $m, n \in M$, then

$$f(z(x + a) + (y + a), m) = f(zx + y + a, m)$$

$$= (zx + y)m + aM$$

$$= zxm + ym + aM$$

1
\[f(x + a, zm + n) = x(zm + n) + aM \]
\[= zxm + xn + aM \]
\[= (zxm + aM) + (xn + aM) \]
\[= zf(x + a, m) + f(x + a, n). \]

Hence \(f \) is an \(A \)-bilinear map.

Since \(f \) is an \(A \)-bilinear map, by the universal property of tensor product, then there exists a unique \(A \)-module homomorphism \(\varphi : A/a \otimes_A M \to M/aM \) such that for all \(x \in A \) and \(m \in M \), we have
\[\varphi((x + a) \otimes m) = xm + aM. \]

Define another map \(\psi : M/aM \to A/a \otimes_A M \) as: for all \(m + aM \), we have
\[\psi(m + aM) = (1 + a) \otimes m. \]

Claim III: \(\psi \) is well defined.

In fact, for all \(m, n \in M \) such that \(m - n \in aM \), then there exists some \(a \in a \) and \(l \in M \) such that \(m - n = al \). Hence
\[\psi(m + aM) = (1 + a) \otimes m \]
\[= (1 + a) \otimes (al + n) \]
\[= (1 + a) \otimes (al) + (1 + a) \otimes n \]
\[= [a(1 + a)] \otimes l + (1 + a) \otimes n \]
\[= (a + a) \otimes l + (1 + a) \otimes n \]
\[= 0 \otimes l + (1 + a) \otimes n \]
\[= 0 + (1 + a) \otimes n \]
\[= (1 + a) \otimes n \]
\[= \psi(n + aM). \]

Claim IV: \(\psi \) is an \(A \)-module homomorphism.

In fact, for all \(m, n \in M \) and \(x \in A \), we have
\[\psi(x(m + aM) + n + aM) = f(xm + n + aM) \]
\[= (1 + a) \otimes (xm + n) \]
\[= (1 + a) \otimes (xm) + (1 + a) \otimes n \]
\[= x(1 + a) \otimes m + (1 + a) \otimes n \]
\[= x\psi(m + aM) + \psi(n + aM). \]

Hence \(\psi \) is an \(A \)-module homomorphism.

Claim V: \(\psi \circ \varphi = Id. \)
In fact for all simple tensor \((x + a) \otimes m \in A/a \otimes_A M\), then

\[
\psi \circ \varphi((x + a) \otimes m) = \psi(xm + aM) = (1 + a) \otimes (xm) = [x(1 + a)] \otimes m = (x + a) \otimes m.
\]

Since \(A/a \otimes_A M\) is generated by simple tensors, then \(\psi \circ \varphi = Id\) on \(A/a \otimes_A M\).

Claim VI: \(\varphi \circ \psi = Id\).

For all \(m + aM \in M/aM\), then

\[
\varphi \circ \psi(m + aM) = \varphi((1 + a) \otimes m) = 1m + aM = m + aM.
\]

Hence \(\varphi \circ \psi = Id\) on \(M/aM\).

In summary, we know that \(\varphi\) and \(\psi\) are \(A\)-module isomorphisms. Hence we know that \((A/a) \otimes_A M\) is isomorphic to \(M/aM\).

\[\square\]

3. Let \(A\) be a local ring, \(M\) and \(N\) finitely generated \(A\)-modules. Prove that if \(M \otimes_A N = 0\), then \(M = 0\) or \(N = 0\).

Proof. Since \(A\) is a local ring, then \(A\) has a unique maximal ideal \(m\) in \(A\). Since \(m\) is the unique maximal ideal in \(A\), then the Jacobson radical \(J\) of \(A\) is equal to \(m\) and \(k = A/m\) is a field.

For any \(A\)-module \(L\), let \(L_k = k \otimes_A L\). By the result of the Problem 2, then

\[L_k = k \otimes_A L = A/m \otimes_A L \cong L/mL.\]

Then \(L_k\) is a \(k\)-vector space. Since \(M \otimes_A N = 0\), then \((M \otimes_A N)_k = 0\). On the other hand, since \(k \otimes_k k = k\), then we know that

\[
(M \otimes_A N)_k = k \otimes_A (M \otimes_A N) = k \otimes_A M \otimes_A N = M \otimes_A k \otimes_A N = M \otimes_A (k \otimes_k k) \otimes_A N = (M \otimes_A k) \otimes_k (k \otimes_A N) = M_k \otimes_k N_k.
\]

Hence \(M_k \otimes_k N_k = 0\). Since \(M_k \otimes_k N_k\) is a \(k\)-vector space of dimension \(\dim M_k \cdot \dim N_k\), hence we must have \(M_k = 0\) or \(N_k = 0\). Without loss of generality, we assume \(M_k = 0 = k \otimes_A M \cong M/mM\). Hence we get

\(M = mM\).

Since \(J = m\) and \(M, N\) are finitely generated \(A\)-modules, by the Nakayama’s Lemma, we know that \(M = 0\).

\[\square\]

4. Let \(M_i (i \in I)\) be any family of \(A\)-modules, and let \(M\) be their direct sum. Prove that \(M\) is flat \(\iff\) each \(M_i\) is flat.
Proof. (\Rightarrow) Assume $M = \bigoplus_{i \in I} M_i$ is flat. For all $i \in I$, define $\pi_i : M \to M_i$ as the i-th projection, that is, for all $(m_j)_{j \in I} \in M$, we have

$$\pi((m_j)_{j \in I}) = m_i.$$

Let $e_i : M_i \to M$ as the i-th embedding, that is, for all $m_i \in M_i$, let $m_j = m_i$ if $i = j$ and $m_j = 0$ if $i \neq j$, then we have

$$e_i(m_i) = (m_j)_{j \in I}.$$

Now for any A-modules N and N' with any injective A-module homomorphism $f : N \to N'$. Since M is flat, then

$$f \otimes 1_M : N \otimes_A M \to N' \otimes_A M$$

is injective.

Let $\overline{f} : N \to f(N) \subset N'$, then \overline{f} is bijective. Since M is flat, then

$$\overline{f} \otimes 1_M : N \otimes_A M \to f(N) \otimes_A M$$

is injective.

Since

$$N \otimes_A M = N \otimes_A \left(\bigoplus_{i \in I} M_i \right) = \bigoplus_{i \in I} (N \otimes_A M_i),$$

and

$$N' \otimes_A M = N' \otimes_A \left(\bigoplus_{i \in I} M_i \right) = \bigoplus_{i \in I} (N' \otimes_A M_i),$$

Then

$$1_N \otimes e_i : N \otimes_A M_i \to N \otimes_A M$$

is injective.

So we get

$$(f \otimes 1_M) \circ (1_N \otimes e_i) : N \otimes_A M_i \to N' \otimes_A M$$

is injective.

Now for $f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$, we want to show that $f \otimes 1_{M_i}$ is injective, since $f \otimes 1_{M_i}(N \otimes_A M_i) \subset f(N) \otimes_A M_i$, then it suffices to show $\overline{f} \otimes 1_{M_i} : N \otimes_A M_i \to f(N') \otimes_A M_i$ is injective. Since $1_{M_i} = \pi_i \circ 1_M \circ e_i$, then

$$\overline{f} \otimes 1_{M_i} = (1_{f(N)} \otimes \pi_i) \circ (\overline{f} \otimes 1_M) \circ (1_N \otimes e_i).$$

Hence $\overline{f} \otimes 1_{M_i}$ is injective. So we know that $f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$ is injective. Therefore, we know that M_i is flat for all $i \in I$.

(\Leftarrow) Assume that for all $i \in I$, M_i is flat. Now for any A-modules N and N' with any injective A-module homomorphism $f : N \to N'$. Since M_i is flat, then

$$f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$$

is injective.

Now consider $f \otimes 1_M : N \otimes_A M \to N' \otimes_A M$, for any $\left(\sum_{\text{finite}} n_j \otimes (m^j_i)_{i \in I} \right) \in \ker f \otimes 1_M$, that is,

$$f \otimes 1_M \left(\sum_{\text{finite}} n_j \otimes (m^j_i)_{i \in I} \right) = 0$$

Then

$$0 = f \otimes 1_M \left(\sum_{\text{finite}} n_j \otimes (m^j_i)_{i \in I} \right)$$

$$= \sum_{\text{finite}} f(n_j) \otimes (m^j_i)_{i \in I}$$

$$= \left(\sum_{\text{finite}} f(n_j) \otimes m^j_i \right)_{i \in I}$$

$$= \left((f \otimes 1_{M_i}) \left(\sum_{\text{finite}} n_j \otimes m^j_i \right) \right)_{i \in I}$$
Then we know that
\[(f \otimes 1_{M_i}) \left(\sum_{\text{finite}} n_j \otimes m_i^j \right) = 0, \quad \forall i \in I.\]

Since \(f \otimes 1_{M_i} \) is injective, then
\[\sum_{\text{finite}} n_j \otimes m_i^j = 0, \quad \forall i \in I.\]

Which implies that
\[\sum_{\text{finite}} n_j \otimes (m_i^j)_{i \in I} = 0.\]

Hence \(f \otimes 1_M \) is injective. Therefore, \(M \) is flat.

\[\square\]

5. Let \(A[x] \) be the ring of polynomials in one indeterminate over a ring \(A \). Prove that \(A[x] \) is a flat \(A \)-algebra.

\textbf{Proof.} We know that \(A[x] \) is a ring such that \(A \) is a subring of \(A[x] \), which implies that \(A[x] \) is an \(A \)-module. So for all \(i \geq 0 \), \(Ax^i \) is an \(A \)-module generated by \(x^i \) in \(A[x] \).

\textbf{Claim I:} \(Ax^i \cong A \) as \(A \)-modules.

Define \(\phi : A \to Ax^i \) as \(\phi(a) = ax^i \), it is easy to see that \(\phi \) is a bijective \(A \)-module homomorphism (Since \(ax^i = 0 \) iff \(a = 0 \)), so \(Ax^i \cong A \) as \(A \)-modules. Since \(A \) is a flat \(A \)-module, then \(Ax^i \) is also flat as \(A \)-module for all \(i \geq 0 \). On the other hand, since \(A[x] = \bigoplus_{i=0}^{\infty} Ax^i \), as \(A \)-modules.

By the result of the Problem 4, we know that \(A[x] \) is a flat \(A \)-module. Let \(i : A \to A[x] \) be the embedding of rings, that is, \(i(a) = a \) for all \(a \in A \), then \(A[x] \) is an \(A \)-algebra. Hence we know that \(A[x] \) is a flat \(A \)-algebra.

\[\square\]

6. For any \(A \)-module \(M \), let \(M[x] \) denote the set of all polynomials in \(x \) with coefficients in \(M \), that is to say expressions of the form
\[m_0 + m_1x + \cdots + m_rx^r, \quad m_i \in M.\]

Defining the product of an element of \(A[x] \) and an element of \(M[x] \) in the obvious way, show that \(M[x] \) is an \(A[x] \)-module. Show that \(M[x] \cong A[x] \otimes_A M \).

\textbf{Proof.} For any \(\sum_{i=0}^{t} a_i x^i \in A[x] \) and \(\sum_{i=0}^{r} m_i x^i \in M[x] \), let
\[\left(\sum_{i=0}^{t} a_i x^i \right) \cdot \left(\sum_{i=0}^{r} m_i x^i \right) = \sum_{j=0}^{t+r} \left(\sum_{i+j=i} a_j m_{i} \right) x^i.\]

\textbf{Claim I:} \(M[x] \) is an \(A[x] \)-module

It is easy to see that \(M[x] \) is an additive group, and the above scalar multiplication by \(A[x] \) is well defined. For all \(\sum_{i=0}^{r} m_i x^i \in M[x] \), we have
\[1 \cdot \left(\sum_{i=0}^{r} m_i x^i \right) = \sum_{i=0}^{r} m_i x^i.\]
It is easy to see that the distribution laws hold for this scalar multiplication. Now we only need to check the associativity law. In fact, for any \(\sum_{i=0}^{t} a_i x^i, \sum_{i=0}^{s} b_i x^i \in A[x] \) and any \(\sum_{i=0}^{r} m_i x^i \in M[x] \), we know that
\[
\left[\left(\sum_{i=0}^{t} a_i x^i \right) \left(\sum_{i=0}^{s} b_i x^i \right) \right] \cdot \left(\sum_{i=0}^{r} m_i x^i \right) = \left[\sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} a_{j_1} b_{j_2} \right) x^i \right] \cdot \left(\sum_{i=0}^{r} m_i x^i \right)
\]
\[
= \sum_{i=0}^{t+s+r} \left(\sum_{j_4+j_5=i} \left(\sum_{j_1+j_2=j_3} a_{j_1} b_{j_2} m_{j_3} \right) \right) x^i
\]
\[
= \sum_{i=0}^{t+s+r} \left(\sum_{j_1+j_2+j_3=i} a_{j_1} b_{j_2} m_{j_3} \right) x^i
\]
\[
= \left[\left(\sum_{i=0}^{t} a_i x^i \right) \left(\sum_{i=0}^{s} b_i x^i \right) \right] \cdot \left(\sum_{i=0}^{r} m_i x^i \right)
\]

In summary, we know that \(M[x] \) is an \(A[x] \)-module.

Claim II: \(M[x] \cong A[x] \otimes_A M \) as \(A[x] \)-modules.

Define the map \(\phi : A[x] \times M \to M[x] \) as: for all \(\sum_{i=0}^{r} a_i x^i \in A[x] \) and all \(m \in M \), we have
\[
\phi \left(\sum_{i=0}^{r} a_i x^i, m \right) = \sum_{i=0}^{r} (a_i m) x^i
\]
It is easy to see that \(\phi \) is well defined an \(A \)-bilinear map, by the universal property of tensor product, then there exists a unique \(A \)-module homomorphism \(\Phi : A[x] \otimes_A M \to M[x] \) such that for all \(\sum_{i=0}^{t} a_i x^i \in A[x] \) and all \(m \in M \), we have
\[
\Phi \left(\left(\sum_{i=0}^{t} a_i x^i \right) \otimes m \right) = \sum_{i=0}^{t} (a_i m) x^i
\]
Now we need to check that \(\Phi \) is an \(A[x] \)-module homomorphism, it suffices to check the \(A[x] \)-linearity for the simple tensors. In fact, for all \(\sum_{i=0}^{t} a_i x^i, \sum_{i=0}^{s} b_i x^i \in A[x] \) and \(m \in M \), we have
\[
\Phi \left(\left(\sum_{i=0}^{s} b_i x^i \right) \left(\left(\sum_{i=0}^{t} a_i x^i \right) \otimes m \right) \right) = \Phi \left(\left(\sum_{i=0}^{s} b_i x^i \right) \left(\sum_{i=0}^{t} a_i x^i \right) \right) \otimes m
\]
\[\Phi \left(\sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2} \right) x^i \otimes m \right) \]

\[= \sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2} \right) mx^i \]

\[= \left(\sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2} \right) x^i \right) \cdot m \]

\[= \left[\left(\sum_{i=0}^{s} b_i x^i \right) \left(\sum_{i=0}^{t} a_i x^i \right) \right] \cdot m \]

\[= \left(\sum_{i=0}^{s} b_i x^i \right) \cdot \left[\left(\sum_{i=0}^{t} a_i x^i \right) \cdot m \right] \]

\[= \left(\sum_{i=0}^{s} b_i x^i \right) \cdot \Phi \left(\left(\sum_{i=0}^{t} a_i x^i \otimes m \right) \right) \]

Also the additivity follows from \(A \)-module homomorphism. Hence \(\Phi \) is an \(A[x] \)-module homomorphism. Define \(\Psi : M[x] \rightarrow A[x] \otimes_A M \) as: for all \(\sum_{i=0}^{r} m_i x^i \in M[x] \), we have

\[\Psi \left(\sum_{i=0}^{r} m_i x^i \right) = \sum_{i=0}^{r} x^i \otimes m_i \]

It is easy to see that \(\Psi \) is a well defined additive group homomorphism, now we need to check \(A[x] \)-linearity. For any \(\sum_{i=0}^{t} a_i x^i \in A[x] \) and \(\sum_{i=0}^{r} m_i x^i \in M[x] \), then

\[\Psi \left(\sum_{i=0}^{t} a_i x^i \right) \cdot \left(\sum_{i=0}^{r} m_i x^i \right) = \Psi \left(\sum_{i=0}^{t+r} \left(\sum_{j_1+j_2=i} a_{j_1} m_{j_2} \right) x^i \right) \]

\[= \sum_{i=0}^{t+r} x^i \otimes \left(\sum_{j_1+j_2=i} a_{j_1} m_{j_2} \right) \]

\[= \sum_{i=0}^{t+r} \sum_{j_1+j_2=i} x^i \otimes (a_{j_1} m_{j_2}) \]

\[= \sum_{i=0}^{t+r} \sum_{j_1+j_2=i} (a_{j_1} x^i) \otimes m_{j_2} \]

\[= \sum_{i=0}^{t+r} \sum_{j_1+j_2=i} ((a_{j_1} x^{j_1}) x^{j_2}) \otimes m_{j_2} \]

\[= \sum_{i=0}^{t+r} \sum_{j_1+j_2=i} (a_{j_1} x^{j_1}) \cdot (x^{j_2} \otimes m_{j_2}) \]

\[= \sum_{i=0}^{t+r} \sum_{j_1+j_2=i} (a_{j_1} x^{j_1}) \cdot \Psi((m_{j_2} x^{j_2}) \]
\[= \left(\sum_{i=0}^{t} \alpha_i x_i^t \right) \cdot \Psi \left(\sum_{i=0}^{r} m_i x^i \right) \]

Hence \(\Psi \) is \(A[x] \)-module homomorphism. Now for any \(\sum_{i=0}^{r} m_i x^i \in M[x] \), then

\[
\Phi \circ \Psi \left(\sum_{i=0}^{r} m_i x^i \right) = \Phi \left(\sum_{i=0}^{r} x^i \otimes m_i \right) = \sum_{i=0}^{r} \Phi(x^i \otimes m_i) = \sum_{i=0}^{r} m_i x^i.
\]

That is, \(\Phi \circ \Psi = \text{Id} \). Now for any \(\sum_{i=0}^{r} \alpha_i x^i \in A[x] \) and all \(m \in M \), we have

\[
\Psi \circ \Phi \left(\left(\sum_{i=0}^{r} \alpha_i x^i \right) \otimes m \right) = \Psi \left(\sum_{i=0}^{r} (\alpha_i m) x^i \right) = \sum_{i=0}^{r} x^i \otimes (\alpha_i m) = \sum_{i=0}^{r} (\alpha_i x^i) \otimes m = \left(\sum_{i=0}^{r} (\alpha_i x^i) \right) \otimes m.
\]

Which implies that \(\Psi \circ \Phi = \text{Id} \). Therefore, we know that \(\Phi \) and \(\Psi \) are \(A[x] \)-module isomorphisms, in particular, \(M[x] \cong A[x] \otimes_A M \) as \(A[x] \)-modules.

\[\Box\]

15. Let \(A \) be a ring and let \(X \) be the set of all prime ideals of \(A \). For each subset \(E \) of \(A \), let \(V(E) \) denote the set of all prime ideals of \(A \) which contain \(E \). Prove that

a. If \(a \) is the ideal generated by \(E \), then \(V(E) = V(a) = V(\sqrt{a}) \).

b. \(V(0) = X \), \(V(1) = \emptyset \).

c. If \((E_i)_{i \in I} \) is any family of subsets of \(A \), then

\[V \left(\bigcup_{i \in I} E_i \right) = \bigcap_{i \in I} V(E_i).\]

d. \(V(a \cap b) = V(ab) = V(a) \cup V(b) \) for any ideals \(a, b \) of \(A \).

\textit{Proof.} a. Since \(E \subset a \subset \sqrt{a} \), then

\[V(\sqrt{a}) \subset V(a) \subset V(E).\]

Now for any prime ideal \(p \) of \(A \) such that \(E \subset p \), by the definition of \(a \), then \(a \subset p \), that is, \(p \in V(a) \). Also since \(a \subset p \), then \(\sqrt{a} \subset \sqrt{p} \). Since \(p \) is prime, then \(\sqrt{p} = p \). Hence \(\sqrt{a} \subset p \), that is, \(p \in V(\sqrt{p}) \).

Therefore, we know that

\[V(\sqrt{a}) = V(a) = V(E).\]
b. For any prime ideal \(p \) of \(A \), we know that \(0 \in p \), then \(p \in V(0) \). Hence
\[
V(0) = X.
\]
For \(V(1) \), we must have \(V(1) = \emptyset \), otherwise, there exists some prime ideal \(p \) of \(A \) such that \(1 \in p \), which implies that \(p = A \), contradiction. Hence
\[
V(1) = \emptyset.
\]
c. Since for \(i \in I \), we have \(E_i \subset \bigcup_{i \in I} E_i \), then
\[
V \left(\bigcup_{i \in I} E_i \right) \subset V(E_i), \quad \forall i \in I.
\]
Hence
\[
V \left(\bigcup_{i \in I} E_i \right) \subset \bigcap_{i \in I} V(E_i).
\]
On the other hand, for all \(p \in \bigcap_{i \in I} V(E_i) \), then
\[
p \in V(E_i), \quad \forall i \in I.
\]
That is,
\[
E_i \subset p, \quad \forall i \in I.
\]
Hence
\[
\bigcup_{i \in I} E_i \subset p.
\]
That is, \(p \in V \left(\bigcup_{i \in I} E_i \right) \). Therefore, we know that
\[
V \left(\bigcup_{i \in I} E_i \right) = \bigcap_{i \in I} V(E_i).
\]
d. For any ideals \(a, b \) of \(A \), then
\[
ab \subset a \bigcap b \subset a, \quad \text{and} \quad ab \subset a \bigcap b \subset b.
\]
So we have
\[
V(a) \subset V(a \bigcap b) \subset V(ab), \quad \text{and} \quad V(a) \subset V(a \bigcap b) \subset V(ab).
\]
Hence
\[
V(a) \bigcup V(b) \subset V(a \bigcap b) \subset V(ab).
\]
Now for any \(p \in V(ab) \), then \(ab \subset p \) and \(p \) is prime ideal, which implies that \(a \subset p \) or \(b \subset p \), that is, \(p \in V(a) \bigcup V(b) \). Therefore, we get
\[
V(a) \bigcup V(b) = V(a \bigcap b) = V(ab)
\]
16. Draw pictures of \(\text{Spec}(\mathbb{Z}) \), \(\text{Spec}(\mathbb{R}) \), \(\text{Spec}(\mathbb{C}[x]) \), \(\text{Spec}(\mathbb{R}[x]) \) and \(\text{Spec}(\mathbb{Z}[x]) \).
Proof. a. For \mathbb{Z} which is a PID, the ideal p of \mathbb{Z} is prime if and only if $p = 0$ or $p = p\mathbb{Z}$ for some prime number p in \mathbb{Z}, that is,

$$\text{Spec } \mathbb{Z} = \{ p\mathbb{Z} : p \text{ is a prime number in } \mathbb{Z} \text{ or } p = 0 \}$$

Since \mathbb{Z} is a PID, then for any ideal $a \in \mathbb{Z}$ with $a \neq 0$ and $a \neq \mathbb{Z}$, there exists a unique $m \geq 2 \in \mathbb{N}$ such that $a = m\mathbb{Z}$. For m, by the fundamental theorem of arithmetic, there exists a unique prime factorization

$$m = p_1^{e_1} \cdots p_k^{e_k}, \quad e_i \geq 1.$$

Then we know that for all $1 \leq i \leq k$, the ideal $p_i = p_i\mathbb{Z} \subseteq \text{Spec}\mathbb{Z}$ and

$$V(a) = V(m\mathbb{Z}) = \{ p_1, \ldots, p_k \}.$$

That is to say that nontrivial closed sets in Spec \mathbb{Z} is a finite collection of prime ideals in \mathbb{Z}. On the other hand, for any finite collection of prime ideals $\{ p_1, \ldots, p_k \}$ in \mathbb{Z}, for each $1 \leq i \leq k$, there exists a unique prime number $p_i \in \mathbb{Z}$ such that $p_i = p_i\mathbb{Z}$. Let $m = p_1 \cdots p_k$, and $a = m\mathbb{Z}$, then

$$V(m\mathbb{Z}) = V(a) = \{ p_1, \ldots, p_k \}.$$

So we know that a subset U of Spec \mathbb{Z} is open if and only if $U = \emptyset$ or Spec $\mathbb{Z}\setminus U$ is a finite set. That is to say, the topology on Spec \mathbb{Z} is the finite completion topology.

b. For \mathbb{R}, since \mathbb{R} is a field, then only prime ideal in \mathbb{R} is 0, that is,

$$\text{Spec } \mathbb{R} = \{ \emptyset \}.$$

The open sets of Spec \mathbb{R} are \emptyset and $\{ \} = \{ a \}$, and the topology on Spec \mathbb{R} is the discrete topology.

c. For $\mathbb{C}[x]$, since $\mathbb{C}[x]$ is PID, then the ideal p of $\mathbb{C}[x]$ is prime if and only if $p = 0$ or $p = f(x)\mathbb{C}[x]$ for some monic irreducible polynomial $f(x) \in \mathbb{C}[x]$ with $\text{deg}f(x) \geq 1$. Since \mathbb{C} is algebraic closed, then only monic irreducible polynomials are of the form $x - c$ for some $c \in \mathbb{C}$. Hence we know that

$$\text{Spec } \mathbb{C}[x] = \{ p : p = 0 \text{ or } p = (x - c)\mathbb{C}[x] \text{ for some } c \in \mathbb{C} \}.$$

Since $\mathbb{C}[x]$ is a PID, then for any ideal $a \in \mathbb{C}[x]$ with $a \neq 0$ and $a \neq \mathbb{C}[x]$, there exists a unique monic polynomial $m(x) \in \mathbb{C}[x]$ such that $a = m(x)\mathbb{C}[x]$. For $m(x)$, since $\mathbb{C}[x]$ is UFD, then there exists some $c_1, c_2, \cdots, c_k \in \mathbb{C}$ such that

$$m(x) = (x - c_1)^{e_1} \cdots (x - c_k)^{e_k}, \quad e_i \geq 1.$$

Then we know that for all $1 \leq i \leq k$, the ideal $p_i = (x - c_1)\mathbb{C}[x] \subseteq \text{Spec}\mathbb{C}[x]$ and

$$V(a) = V(m(x)\mathbb{C}[x]) = \{ p_1, \ldots, p_k \}.$$

That is to say that nontrivial closed sets in Spec $\mathbb{C}[x]$ is a finite collection of prime ideals in $\mathbb{C}[x]$. On the other hand, for any finite collection of prime ideals $\{ p_1, \ldots, p_k \}$ in $\mathbb{C}[x]$, for each $1 \leq i \leq k$, there exists a unique $c_i \in \mathbb{C}$ such that $p_i = (x - c_i)\mathbb{C}[x]$. Let $m(x) = (x - c_1) \cdots (x - c_k)$, and $a = m(x)\mathbb{C}[x]$, then

$$V(m(x)\mathbb{C}[x]) = V(a) = \{ p_1, \ldots, p_k \}.$$

So we know that a subset U of Spec $\mathbb{C}[x]$ is open if and only if $U = \emptyset$ or Spec $\mathbb{C}[x]\setminus U$ is a finite set. That is to say, the topology on Spec $\mathbb{C}[x]$ is the finite completion topology.

d. For $\mathbb{R}[x]$, since $\mathbb{R}[x]$ is PID, then the ideal p of $\mathbb{R}[x]$ is prime if and only if $p = 0$ or $p = f(x)\mathbb{R}[x]$ for some monic irreducible polynomial $f(x) \in \mathbb{R}[x]$ with $\text{deg}f(x) \geq 1$. Since only monic irreducible polynomials are of the form $x - c$ for some $c \in \mathbb{R}$ or $x^2 + ax + b$ with $a^2 - 4b < 0$ for some $a, b \in \mathbb{R}$. Hence we know that

$$\text{Spec } \mathbb{R}[x] = \{ p : p = 0 \text{ or } p = (x - c)\mathbb{R}[x] \text{ for } c \in \mathbb{R} \text{ or } p = (x^2 + ax + b)\mathbb{R}[x] \text{ for } a, b \in \mathbb{R} \text{ with } a^2 - 4b < 0 \}.$$
Since $R[x]$ is a PID, then for any ideal $a \in R[x]$ with $a \neq 0$ and $a \neq R[x]$, there exists a unique monic polynomial $m(x) \in R[x]$ such that $a = m(x)R[x]$. For $m(x)$, since $R[x]$ is UFD, then there exists some irreducible monic polynomials $p_1(x), \ldots, p_k(x) \in R[x]$ such that

$$m(x) = p_1(x)^{e_1} \cdots p_k(x)^{e_k}, \quad e_i \geq 1.$$

Then we know that for all $1 \leq i \leq k$, the ideal $p_i = p_i(x)R[x] \in \text{Spec}R[x]$ and

$$V(a) = V(m(x)R[x]) = \{p_1, \ldots, p_k\}.$$

That is to say that nontrivial closed sets in $\text{Spec} R[x]$ is a finite collection of prime ideals in $R[x]$. On the other hand, for any finite collection of prime ideals $\{p_1, \ldots, p_k\} \in R[x]$, for each $1 \leq i \leq k$, there exists a unique monic irreducible polynomial $p_i(x) \in R[x]$ such that $p_i = p_i(x)R[x]$. Let $m(x) = p_1(x) \cdots p_k(x)$, and $a = m(x)R[x]$, then

$$V(m(x)R[x]) = V(a) = \{p_1, \ldots, p_k\}.$$

So we know that a subset U of $\text{Spec} R[x]$ is open if and only if $U = \emptyset$ or $\text{Spec} R[x] \setminus U$ is a finite set. That is to say, the topology on $\text{Spec} R[x]$ is the finite completion topology.

e. Claim I: The ideal p of $Z[x]$ is prime if and only if p is one of the following cases:

i. $p = 0$.

ii. $p = (p)$ for some prime number p in \mathbb{Z}.

iii. $p = (f(x))$ for some primitive irreducible polynomial $f(x)$ in $\mathbb{Z}[x]$.

iv. $p = (p, f(x))$ for some prime number p in \mathbb{Z} and primitive irreducible polynomial $f(x)$ in $\mathbb{Z}[x]$ such that $f(x)$ is also irreducible in $\mathbb{Z}[x]/p\mathbb{Z}[x] \cong F_p[x]$.

(\Longleftarrow) i. Since $Z[x]$ is a domain, then $p = 0$ is prime in $[Z[x]]$.

ii. For any $f(x), g(x) \in Z[x]$ such that $f(x)g(x) \in p = (p)$ for some prime number p in \mathbb{Z}, then

$$p | f(x)g(x)$$

Recall the Gauss’s Lemma:

Let A be a UFD, $f(x)$ and $g(x)$ be primitive polynomials in $A[X]$, then $f(x)g(x)$ is also primitive.

Since p is a prime number in \mathbb{Z}, by the Gauss’s Lemma, we know that $p | f(x)$ or $p | g(x)$ in $\mathbb{Z}[x]$, that is, $f(x) \in p$ or $g(x) \in p$. Hence p is prime in $\mathbb{Z}[x]$.

iii. For any $g(x), h(x) \in \mathbb{Z}[x]$ such that $g(x)h(x) \in p = (f(x))$ for some primitive irreducible polynomial $f(x)$ in $\mathbb{Z}[x]$, then

$$f(x)|g(x)h(x)$$

Since $f(x)$ is irreducible in $\mathbb{Z}[x]$, then $f(x)$ is also irreducible in $Q[x]$. Hence $f(x)|g(x)$ or $f(x)|h(x)$ in $Q[x]$. Without loss of generality, assume $f(x)|g(x)$ in $Q[x]$, then there exists some $m(x) \in Q[x]$ such that

$$g(x) = m(x)f(x).$$

Since $f(x), g(x) \in \mathbb{Z}[x]$ and f is primitive, by the Gauss’s Lemma, then $m(x) \in \mathbb{Z}[x]$, that is, $f(x)|g(x)$ in $\mathbb{Z}[x]$. Hence p is prime in $\mathbb{Z}[x]$.

iv. $p = (p, f(x))$ for some prime number p in \mathbb{Z} and primitive irreducible polynomial $f(x)$ in $\mathbb{Z}[x]$ such that $f(x)$ is also irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$. Let $\pi : \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ be the natural ring homomorphism, that is, for all $n \in \mathbb{Z}$, we have

$$\pi(n) = n + p\mathbb{Z}.$$

Then π can induce a ring homomorphism $\overline{\pi} : \mathbb{Z}[x] \to \mathbb{Z}/p\mathbb{Z}[x]$ such that $\overline{\pi}|_\mathbb{Z} = \pi$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field and $\overline{f}(x)$ is irreducible on $\mathbb{Z}/p\mathbb{Z}[x]$, then $\mathbb{Z}/p\mathbb{Z}[x]/(\overline{f}(x))$ is a field extension of $\mathbb{Z}/p\mathbb{Z}$.

Define the map $\Phi : \mathbb{Z}[x] \to \mathbb{Z}/p\mathbb{Z}[x]/(\overline{f(x)})$ as: for all $g(x) \in \mathbb{Z}[x]$, we have

$$\Phi(g(x)) = \overline{g(x)} + (\overline{f(x)}).$$

It is easy to see that Φ is a ring homomorphism. Now let’s look at the kernel of Φ. It is easy to see that $p, f(x) \in \ker \Phi$, since $\ker \Phi$ is an ideal of $\mathbb{Z}[x]$, then

$$(p, f(x)) \subset \ker \Phi.$$

On the other hand, for all $g(x) \in \ker \Phi$, then $\overline{g(x)} \in \overline{f(x))}$. That is, there exists some $h \in \mathbb{Z}[x]$ such that

$$\overline{g(x)} = \overline{f(x)}h(x) = \overline{f(x)h(x)}.$$

Hence $\overline{g(x)} - \overline{f(x)h(x)} = 0$, that is, there exists some $k(x) \in \mathbb{Z}[x]$ such that

$$g(x) - f(x)h(x) = pk(x).$$

That is, $g(x) = h(x)f(x) + k(x)p \in (p, f(x))$. Hence we get

$$\ker \Phi = (p, f(x)).$$

By the first isomorphism theorem, then

$$\mathbb{Z}/p\mathbb{Z}[x]/(\overline{f(x)}) \cong \mathbb{Z}[x]/(p, f(x)),$$

which is a field. Hence $(p, f(x))$ is maximal in $\mathbb{Z}[x]$, in particular, $p = (p, f(x))$ is prime in $\mathbb{Z}[x]$.

Now assume p is a prime ideal in $\mathbb{Z}[x]$. If $p = 0$, we are done. Now assume $p \neq 0$. Let $q = p \cap \mathbb{Z}$, then q is prime in \mathbb{Z}.

Case I: If $q = 0$. Let $S = \mathbb{Z}\setminus \{0\}$, then S is a multiplicative subset of $\mathbb{Z}[x]$ and $p \cap S = \emptyset$. Since $S^{-1}\mathbb{Z} = \mathbb{Q}$, then

$$S^{-1}\mathbb{Z}[x] = \mathbb{Q}[x].$$

Since $S \cap p = \emptyset$ and p is prime in $\mathbb{Z}[x]$, then $S^{-1}p$ is prime in $S^{-1}\mathbb{Z}[x] = \mathbb{Q}[x]$. Since $\mathbb{Q}[x]$ is PID, then there exists some irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that $S^{-1}p = (f(x))$ in $\mathbb{Q}[x]$. Then by multiplying some constant, without loss of generality, we can assume $f(x) \in \mathbb{Z}[x]$. Since $p \cap S = \emptyset$, then

$$p = (f(x)) \cap \mathbb{Z}[x].$$

That is, $p = (f(x))$ in $\mathbb{Z}[x]$, where $f(x)$ is primitive irreducible polynomial in $\mathbb{Z}[x]$.

Case II: If $q \neq 0$. Since q is prime in \mathbb{Z}, then there exists some prime number p in \mathbb{Z} such that $q = p\mathbb{Z}$, then $p\mathbb{Z}[x] \subset p$. By the forth isomorphism theorem, we know that $p/p\mathbb{Z}[x]$ is a prime ideal in $\mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{Z}/p\mathbb{Z}[x]$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field, then $\mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{Z}/p\mathbb{Z}[x]$ is PID.

Subcase I: $p/p\mathbb{Z}[x] = 0$, then $p = (p)$, we are done.

Subcase II: $p/p\mathbb{Z}[x] \neq 0$, since $p/p\mathbb{Z}[x]$ is a prime ideal in $\mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{Z}/p\mathbb{Z}[x]$ which is PID, then there exists some primitive irreducible polynomial $f(x) \in \mathbb{Z}[x]$ such that $\overline{f(x)}$ is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$ and

$$p/p\mathbb{Z}[x] = (\overline{f(x)}).$$

Hence we get $p = (p, f(x))$.

In summary, we can conclude that the Claim I is true.

\[\square\]