1. For years, a company has plowed back 60% of earnings while making a 20% return on equity and maintaining a 3% dividend yield. The debt ratio has remained constant. The market has priced the shares as if the growth rate corresponding to this financial performance could continue forever. By what % and in what direction will the share price change if the company suddenly announces, in a complete surprise to the market, that it has no further opportunities for profitable growth beyond its current scale of operations, it now plans no further growth at all, and will begin to pay out all of its earnings as dividends every year?

2. Suppose that the current price in the market for blank silicon wafers used as raw material for chip manufacturing is $0.50 per wafer. Your engineering staff tell you that their best and most reliable consultants forecast that the price of blank silicon wafers will rise an average rate of 2% per year for the next 3 years, 6% per year for the following 2 years, and reach long run equilibrium at 3% per year thereafter forever. You think that the forecast makes a lot of sense. You expect to be using 400,000 blank silicon wafer per year in your manufacturing operation for each of the next 20 years. Assume that blank silicon wafers have a $\beta = 0$, that the risk free rate is 1% for the next three years and 3% thereafter forever, and that any excess stock of silicon wafers from year to year can be stored for a negligible cost. For each of the the next 20 years you have purchased a European call option expiring at the end of that year on 400,000 blank silicon wafers with a strike price of $0.55 per wafer to hedge your exposure to a rise in price. For each of the next 20 years you have sold short a European put option expiring at the end of that year on 400,000 blank
silicon wafers with a strike price of $0.55 per wafer in order to help finance the call option purchase. What is the value today of your net position in all of these options?

3. The Black-Scholes formula for the price of a call option is

\[c = S\Phi(d_1) - e^{-rT}K\Phi(d_2) \]

where \(d_1\) and \(d_2\) are expressions that you can evaluate. Once you know \(d_1\) the value of \(\Phi(d_1)\) can be obtained from a spreadsheet function of normal probability values (or a published table of them.) Presumably, then, \(\Phi(d_1)\) must be the probability of some event. Explain what that event is and why \(\Phi(d_1)\) is its probability.

4. Assume your company has three classes of securities in its financing structure: $500 million (market value) of senior perpetual debt with a market yield of 5%; $4 billion (market value) of junior high yield (junk) perpetual debt with a market yield of 15%; and $250 million (market value) of common equity with a market capitalization rate of 40%. Assume a corporate tax rate of 35% and that, because of the high proportion of junk financing, the tax authorities grant tax deductibility to only 1/3 of the interest on the high yield financing.

(a) What is the firm’s weighted average cost of capital (WACC)?

(b) What can you conclude (if anything) about the cost of capital for an all-equity firm with the same operating risks? If you answer "nothing" give reasons.

5. With the following expected returns and covariance matrix what are the weights \(w_1, w_2,\) and \(w_3\) of each of the three assets in the optimal portfolio assuming the risk free rate is .001? You don’t have to prove your answer but you do have to show how you calculated it.

\[\begin{align*}
 \mathbf{r} &= \begin{bmatrix} .0076 \\ .0673 \\ .1480 \end{bmatrix} \\
 \mathbf{\sigma}_{i,j} &= \begin{bmatrix} .01 & -.009 & 0 \\ -.009 & .03 & .02 \\ 0 & .02 & .06 \end{bmatrix}
\end{align*} \]
6. A commodities trading firm has the following market value balance sheet (in millions of $):

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>short-term</td>
<td>short term</td>
</tr>
<tr>
<td>treasury bonds</td>
<td>200</td>
</tr>
<tr>
<td>long commodity positions</td>
<td>750</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

The standard deviations and correlations between returns on the asset and liability holdings are:

\[\sigma(sta) = 0.02 \quad \rho(sta, tb) = 0 \quad 0 \quad \rho(sta, lcp) = 0 \quad \rho(sta, stl) = 0 \quad \rho(sta, scp) = 0 \]
\[\sigma(tb) = 0.02 \quad \rho(tb, lcp) = 0.8 \quad \rho(tb, stl) = 0 \quad \rho(tb, scp) = -0.8 \]
\[\sigma(lcp) = 0.25 \quad \rho(lcp, stl) = 0 \quad \rho(lcp, scp) = -0.7 \]
\[\sigma(stl) = 0.02 \quad \rho(stl, scp) = 0 \]
\[\sigma(scp) = 0.35 \]

(a) What is the standard deviation of returns on equity?

(b) Suppose the firm wants to hedge by taking a position in treasury futures. If the price for a futures contract is \(V_{tf} = 90,000 \) for each $100,000 treasury future contract and

\[\sigma(tf) = 0.35 \]
\[\rho(tf, sta) = 0 \]
\[\rho(tf, tb) = 0.9 \]
\[\rho(tf, lcp) = 0.5 \]
\[\rho(tf, stl) = 0 \]
\[\rho(tf, scp) = -0.3 \]

then should the treasury futures position be long or short? How many contracts should they buy or sell? How much is the standard deviation of equity reduced?