The Limit of a Function

Solutions should show all of your work, not just a single final answer.

1. The graph of \(y = f(x) \) is below. Compute each value or explain why it doesn’t exist.

 \[
 y
 \]

 \[
 x
 \]

 \[
 0
 \]

 \[
 1
 \]

 \[
 2
 \]

 \[
 3
 \]

 \[
 1
 \]

 \[
 2
 \]

 \[
 3
 \]

 \[
 0 \quad 1 \quad 2 \quad 3 \quad x
 \]

 (a) \(\lim_{x \to 0^-} f(x) \)

 (b) \(\lim_{x \to 0^+} f(x) \)

 (c) \(\lim_{x \to 0} f(x) \)

 (d) \(f(0) \)

 (e) \(\lim_{x \to 1^-} f(x) \)

 (f) \(\lim_{x \to 1^+} f(x) \)

 (g) \(\lim_{x \to 1} f(x) \)

 (h) \(f(1) \)

 (i) \(\lim_{x \to 2^-} f(x) \)

 (j) \(\lim_{x \to 2^+} f(x) \)

 (k) \(\lim_{x \to 2} f(x) \)

 (l) \(f(2) \)

2. Determine whether the following limits are finite, \(\infty \), or \(-\infty \). If the limit does not exist for any other reason, write DNE with a justification.

 (a) \(\lim_{x \to 1} \frac{\sqrt{x}}{2(x-1)^2} \)

 (b) \(\lim_{x \to 1^+} \frac{x - 2}{x - 1} \)

 (c) \(\lim_{x \to 0} \frac{1}{x} - \frac{1}{x^2} \)

3. T/F (with justification) The line \(x = 1 \) is a vertical asymptote of the graph of \(y = \frac{x^2 - 1}{x^2 - 2x + 1} \).

4. T/F (with justification) The line \(x = 1 \) is a vertical asymptote of the graph of \(y = \frac{x^2 - 2x + 1}{x^2 - 1} \).