Antiderivatives and Definite Integrals

Name: ____________________________ Section No: __________

1. Find the most general antiderivative of the function (use C as any constant).

 (a) $f(x) = \frac{1}{2} + \frac{3}{4}x^2 - \frac{4}{5}x^3$

 (b) $f(t) = \frac{t^4 + 3\sqrt{t}}{t^2}$

 (c) $g(\theta) = \cos \theta - 5\sin \theta$

2. Find a function $f(x)$ satisfying the given conditions.

 (a) $f'''(x) = \cos x$, $f(0) = 1$, $f'(0) = 2$, and $f''(0) = 3$

 (b) $f''(x) = 2 - 12x$, $f(0) = 9$, $f(2) = 7$

3. The graph of $y = 4 - x^2$ over the interval $[0, 2]$ is given below.

 (a) Estimate the area under the graph over $[0, 2]$ using 4 rectangles and right endpoints: sketch the rectangles and then compute their areas.
(b) Repeat part (a) using 4 rectangles and left endpoints.
(c) Repeat part (a) using 4 rectangles and midpoints.
(d) Compute the exact area under \(y = 4 - x^2 \) over \([0, 2]\) using the Fundamental Theorem of Calculus and indicate which of the approximations in (a), (b), and (c) is closest to this.

4. Here’s a graph of the velocity (in ft/sec) of an object that is moving along a horizontal line with the right direction being positive and the left direction being negative.

Describe the motion of the object over the interval \(0 \leq t \leq 24 \): when is it moving left or right, and when is it speeding up or slowing down?

5. (a) Let \(A_0(x) = \int_0^x (1 - t^2) \, dt \), \(A_1(x) = \int_1^x (1 - t^2) \, dt \), and \(A_2(x) = \int_2^x (1 - t^2) \, dt \). Compute these explicitly in terms of \(x \) using Part 2 of the Fundamental Theorem of Calculus.
(b) Over the interval \([0, 2]\), use your answers in part (a) to sketch the graphs of \(y = A_0(x) \), \(y = A_1(x) \), and \(y = A_2(x) \) on the same set of axes.
(c) How are the three graphs in part (a) related to each other? In particular, what does Part 1 of the Fundamental Theorem of Calculus tell you about the graphs in part (a)?
(d) On a graph of \(y = 1 - t^2 \), for \(0 \leq t \leq 2 \), shade the region with signed area \(A_0(1.5) \). Indicate with + and − which area counts positively and which negatively.

6. Use a definite integral to write down a function \(g(x) \) such that \(g'(x) = \cos^3 x \) and \(g(0) = 1 \). Explain why your answer fits the required conditions.