Computing Derivatives

Name: _______________________________ Section No: __________

Compute the derivative of the functions below using differentiation rules up through Section 3.3 (power rule, sum rule, product rule, quotient rule). Simplify final answers when requested. Parameters a, b, and n are constants.

Remark. Although the derivatives of $1/x = x^{-1}$ and $\sqrt{x} = x^{1/2}$ are special instances of the power rule, they come up often enough that they’re worth committing to memory so you know them immediately when needed: $\frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2}$ and $\frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}$.

1. $f(x) = 7x^3 - 5x + 8$
2. $f(x) = \frac{1}{x} + \frac{1}{1-x}$ (in final answer, use common denominator and simplify numerator)
3. $f(x) = \frac{ax}{x+b}$ (simplify final answer)
4. $f(x) = \frac{e^x}{1 + e^x}$ (simplify numerator in final answer)
5. $f(x) = \frac{\sin x}{1 + \sin x}$ (simplify numerator in final answer)
6. $f(x) = \frac{1 + \sin x}{1 + \cos x}$ (simplify numerator)
7. $f(x) = \frac{e^x}{x^n}$ (simplify final answer)
8. $f(x) = a \sin x + b \cos x$
9. $f(x) = \sin x \cos x$
10. $f(x) = e^x \cos x$
11. $f(x) = x^n e^x$ (factor out common terms in final answer)
12. $f(x) = x^n \cos x$ (factor out common terms in final answer)
13. $f(x) = \sqrt{x} \sin x$ (give final answer a common denominator)
14. $f(x) = \frac{\tan x}{x^2 + 1}$