An airliner passes over an airport at noon travelling 500 mi/hr due west. At 1:00 PM, another airliner passes over the same airport at the same elevation traveling due north at 550 mi/hr. Assuming both airliners maintain their (equal) elevations, how fast is the distance between them changing at 2:30 PM?

The trajectories of the two planes will form a right angle at the airport. Let \(x \) be the distance the westbound plane has traveled past the airport, \(y \) the distance the northbound plane has traveled past the airport, and \(z \) the distance between the two planes, as shown in the figure above. We are given that \(\frac{dx}{dt} = 500 \text{ mi/hr} \) and \(\frac{dy}{dt} = 550 \text{ mi/hr} \). Our goal is to find \(\frac{dz}{dt} \) at 2:30 PM.

We can apply the Pythagorean Theorem to get the relationship
\[
x^2 + y^2 = z^2
\]
And take the derivative with respect to time to get
\[
2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt}
\]
Solve for \(\frac{dz}{dt} \):
\[
\frac{2x \frac{dx}{dt} + 2y \frac{dy}{dt}}{2z} = \frac{dz}{dt}
\]
At 2:30 PM: the westbound plane has been flying past the airport for 2.5 hours (from 12:00 PM to 2:30 PM), so \(x = (2.5 \text{ hr})(500 \text{ mi/hr}) = 1250 \) miles. The northbound plane has been past the airport for 1.5 hours, so \(y = (1.5 \text{ hr})(550 \text{ mi/hr}) = 825 \) miles. Hence \(z = \sqrt{825^2 + 1250^2} \)

At this point we can plug in the values of \(x, y, z, \frac{dx}{dt} \) and \(\frac{dy}{dt} \).
\[
\frac{dz}{dt} = \frac{2(1250)(500) + 2(825)(550)}{2\sqrt{825^2 + 1250^2}} \approx 720.268
\]