Comparing subshifts in \mathbb{Z} and \mathbb{Z}^2

Linda Brown Westrick University of Connecticut, Storrs

March 26, 2015 ASL North American Annual Meeting University of Illinois Urbana-Champaign

- Subshifts
- The 1D-2D discrepancy for shifts of finite type
- Candidates for a better one-dimensional analogy

Subshifts

A subshift is a subset of $2^{\mathbb{Z}}$ that is both

• topologically closed

• closed under the shift operation $\{x_i\}_{i\in\mathbb{Z}} \mapsto \{x_{i-1}\}_{i\in\mathbb{Z}}$

A subshift is a subset of $2^{\mathbb{Z}}$ that is both

• topologically closed

• closed under the shift operation $\{x_i\}_{i\in\mathbb{Z}} \mapsto \{x_{i-1}\}_{i\in\mathbb{Z}}$

• For any $F \subseteq 2^{<\mathbb{N}}$, the following is a subshift:

 $X_F = \{x \in 2^{\mathbb{N}} : \text{ No } \sigma \in F \text{ appears as a subword in } x \}$

- In fact, subshifts are characterized by their set of forbidden strings.
- Variations: Replace 2 with any finite alphabet. Replace \mathbb{Z} with \mathbb{Z}^d where d is any positive integer, and close under all d possible shift operations. Restrict F to be finite, or c.e.

Examples

In one dimension:

- The full shift $2^{\mathbb{Z}}$.
- The golden mean shift X_F where $F = \{11\}$.
- The S-gap subshifts are X_F , where $F = \{10^n 1 : n \notin S\}$ for some S.

Examples

In one dimension:

- The full shift $2^{\mathbb{Z}}$.
- The golden mean shift X_F where $F = \{11\}$.
- The S-gap subshifts are X_F , where $F = \{10^n 1 : n \notin S\}$ for some S.

In two dimensions:

• forbidding $\begin{cases} 1 & 0 \\ 0, & 1 \end{cases}$ produces elements of $2^{\mathbb{Z}^2}$ where each column contains either all 1's or all 0's.

Examples

In one dimension:

- The full shift $2^{\mathbb{Z}}$.
- The golden mean shift X_F where $F = \{11\}$.
- The S-gap subshifts are X_F , where $F = \{10^n 1 : n \notin S\}$ for some S.

In two dimensions:

• forbidding $\begin{cases} 1 & 0 \\ 0, & 1 \end{cases}$ produces elements of $2^{\mathbb{Z}^2}$ where each column contains either all 1's or all 0's.

Definition

- If F is finite, X_F is called a *shift of finite type (SFT)*.
- If F is c.e., X_F is called a Π_1^0 shift.

The 1D-2D discrepancy for SFTs

With respect to the invariants:

Entropy Medvedev degree

For $X \subseteq 2^{\mathbb{Z}^d}$ a subshift, the entropy of X is

$$h(X) = \lim_{n \to \infty} \frac{\log |\{x[-n:n] : x \in X\}|}{(2n+1)^d},$$

where x[-n:n] is the *d*-dimensional box of radius *n* found at the center of *x*.

Entropy measures the exponential growth rate of possibilities for initial segments of a subshift. If the number of possibilities for strings of length l grows as 2^{sl} , the entropy is s.

This limit converges from above. Thus the entropy of a Π^0_1 subshift is a right-r.e. number.

Theorem (Classical)

The entropies of the one-dimensional SFTs are exactly the non-negative rational multiples of logarithms of Perron numbers.

Theorem (Classical)

The entropies of the one-dimensional SFTs are exactly the non-negative rational multiples of logarithms of Perron numbers.

Theorem (Hochman and Meyerovitch 2010)

The entropies of the d-dimensional SFTs for d > 1 are exactly the right-r.e. numbers.

For $A, B \subseteq 2^{\omega}$, A is Medvedev reducible to B if there is a Turing functional Γ such that whenever $x \in B$, $\Gamma(x) \in A$.

For $A, B \subseteq 2^{\omega}$, A is Medvedev reducible to B if there is a Turing functional Γ such that whenever $x \in B$, $\Gamma(x) \in A$.

Fact (Classical)

Every one-dimensional SFT contains a periodic element. Therefore, all the one-dimensional SFTs have Medvedev degree 0.

For $A, B \subseteq 2^{\omega}$, A is Medvedev reducible to B if there is a Turing functional Γ such that whenever $x \in B$, $\Gamma(x) \in A$.

Fact (Classical)

Every one-dimensional SFT contains a periodic element. Therefore, all the one-dimensional SFTs have Medvedev degree 0.

Theorem (Simpson 2007)

Every Medvedev degree that contains a Π_1^0 set contains a two-dimensional SFT.

	$\mathbb{Z} ext{-}\operatorname{SFT}$	\mathbb{Z}^2 -SFT
Entropies	Perron-related reals	Right-r.e. reals
Medvedev degrees	0 only	All possible

	$\mathbb{Z} ext{-}\operatorname{SFT}$	\mathbb{Z}^2 -SFT
Entropies	Perron-related reals	Right-r.e. reals
Medvedev degrees	0 only	All possible

SFTs in one and d > 1 dimensions are not very similar to each other.

	$\mathbb{Z} ext{-}\operatorname{SFT}$	\mathbb{Z}^2 -SFT
Entropies	Perron-related reals	Right-r.e. reals
Medvedev degrees	0 only	All possible

SFTs in one and d > 1 dimensions are not very similar to each other.

Perhaps there is some class of \mathbb{Z} -subshifts which are more similar to \mathbb{Z}^2 -SFTs than \mathbb{Z} -SFTs are.

Let X be a subshift.

- A factor of X is the image of X under a continuous, shift-invariant map.
- A factor of an SFT is called a *sofic shift*.

In general, if f is continuous and shift-invariant, $h(f(X)) \le h(X)$.

Theorem (Coven & Paul 1975)

Every one-dimensional sofic shift is a factor of an SFT with the same entropy.

Open Question

Is every two-dimensional sofic shift a factor of an SFT with the same entropy?

Extra space to move

Ability to embed a Turing machine

Extra space to move

Ability to embed a Turing machine

- Both theorems about \mathbb{Z}^2 -SFTs crucially use the fact that \mathbb{Z}^2 -SFTs can embed a Turing machine.
- Every legal element of the SFT encodes a run of a Turing machine, which takes as its inputs the symbols of the SFT.
- (Actually the runs of an army of Turing machines!)
- If a Turing machine finds an undesirable pattern, it halts.
- The SFT forbids the pattern of a halted Turing machine, effectively forbidding the undesirable pattern.

Candidates for a better analogy

Two candidates:

 Π_1^0 subshifts Decidable subshifts

An additional invariant: Effective dimension spectrum

Theorem (e.g. Hertling-Spandl 2008)

The entropies of the Π^0_1 subshifts are exactly the right-r.e. numbers.

Theorem (J. Miller 2012)

Every Medvedev degree that contains a Π^0_1 set contains a one-dimensional Π^0_1 subshift.

	$\mathbb{Z} ext{-}\operatorname{SFT}$	$\mathbb{Z} - \Pi_1^0$ shift	\mathbb{Z}^2 -SFT
Entropies	Perron-related	Right-r.e.	Right-r.e.
Medvedev degrees	0 only	All possible	All possible

Theorem (Durand, Romashchenko & Shen 2012; independently Aubrun & Sablik 2013)

Every one-dimensional Π_1^0 subshift can be simulated inside a \mathbb{Z}^2 -SFT.

- This improved a result of Hochman, who simulated them inside a \mathbb{Z}^3 -SFT.
- The simulated subshift is encoded in the columns of the \mathbb{Z}^2 -SFT.
- The main difficulty is coordinating the army of Turing machines to check every detail.

The effective dimension of $x\in 2^{\mathbb{Z}}$ is

$$\dim(x) = \liminf_{n \to \infty} \frac{K(x[-n:n])}{2n+1}.$$

The effective dimension of $x \in 2^{\mathbb{Z}}$ is

$$\dim(x) = \liminf_{n \to \infty} \frac{K(x[-n:n])}{2n+1}$$

Definition

The (d, b)-shift-complex shift is the subshift X_F which forbids

$$F = \{ \sigma : K(\sigma) < d|\sigma| - b \}.$$

- (For large enough b), X_F is a non-empty Π_1^0 subshift.
- Every element of X_F has effective dimension at least d.

The effective dimension of $x\in 2^{\mathbb{Z}^2}$ is

$$\dim(x) = \liminf_{n \to \infty} \frac{K(x[-n:n])}{(2n+1)^2}$$

The effective dimension of $x\in 2^{\mathbb{Z}^2}$ is

$$\dim(x) = \liminf_{n \to \infty} \frac{K(x[-n:n])}{(2n+1)^2}.$$

Theorem (Durand, Levin & Shen 2006)

Every \mathbb{Z}^2 -SFT contains an element x for which K(x[-n:n]) grows linearly with n (and this bound is tight).

Therefore, every \mathbb{Z}^2 -SFT contains an element of effective dimension 0.

The effective dimension spectrum of a set X is $\{\dim x : x \in X\}$.

Theorem (Simpson 2011)

Let X be a subshift in any number of dimensions. The effective dimension spectrum of X has a maximum element, which is the entropy h(X).

The effective dimension spectrum of a set X is $\{\dim x : x \in X\}$.

Theorem (Simpson 2011)

Let X be a subshift in any number of dimensions. The effective dimension spectrum of X has a maximum element, which is the entropy h(X).

Theorem (W.)

Let X be an SFT in any number of dimensions. The effective dimension spectrum of X is [0, h(X)].

Open problem: characterize the effective dimension spectra of Π_1^0 subshifts. But it is known that more variety is possible, e.g. shift-complex subshifts.

	\mathbb{Z} -SFT	$\mathbb{Z} - \Pi_1^0$ shift	\mathbb{Z}^2 -SFT
Entropies	Perron-related	Right-r.e.	Right-r.e.
Medvedev degrees	0 only	All possible	All possible
Dimension Spectrum	[0,h]	variety	[0,h]

	\mathbb{Z} -SFT	$\mathbb{Z} - \Pi_1^0$ shift	\mathbb{Z}^2 -SFT
Entropies	Perron-related	Right-r.e.	Right-r.e.
Medvedev degrees	0 only	All possible	All possible
Dimension Spectrum	[0,h]	variety	[0,h]

- The one-dimensional Π_1^0 subshifts are too powerful because their (external) Turing machine has unlimited access to the input.
- The Turing machines of d-dimensional SFTs use one dimension of the subshift as "time"; therefore, they can only look at a (d-1)-dimensional portion of their input.

A subshift X is decidable if for every σ , it is decidable whether σ can be extended to some $x \in X$.

Decidable subshifts are Π_1^0 , but not vice versa.

A subshift X is decidable if for every σ , it is decidable whether σ can be extended to some $x \in X$.

Decidable subshifts are Π_1^0 , but not vice versa.

Theorem (Hertling-Spandl 2008)

The entropies of the one-dimensional decidable subshifts are exactly the right-r.e. numbers.

A subshift X is decidable if for every σ , it is decidable whether σ can be extended to some $x \in X$.

Decidable subshifts are Π_1^0 , but not vice versa.

Theorem (Hertling-Spandl 2008)

The entropies of the one-dimensional decidable subshifts are exactly the right-r.e. numbers.

However, every decidable subshift contains a computable element, so has Medvedev degree 0.

A subshift X is decidable if for every σ , it is decidable whether σ can be extended to some $x \in X$.

Decidable subshifts are Π_1^0 , but not vice versa.

Theorem (Hertling-Spandl 2008)

The entropies of the one-dimensional decidable subshifts are exactly the right-r.e. numbers.

However, every decidable subshift contains a computable element, so has Medvedev degree 0.

Theorem (W.)

There is a one-dimensional decidable subshift whose dimension spectrum contains 0 and 1/3, but does not contain the interval (0, 1/3).

	$\mathbb{Z} ext{-}\operatorname{SFT}$	$\mathbb{Z} - \Pi_1^0$ shift	\mathbb{Z} -decidable	\mathbb{Z}^2 -SFT
Entropies	Perron-related	Right-r.e.	Right-r.e.	Right-r.e.
Medvedev	0 only	All possible	0 only	All possible
Spectrum	[0,h]	variety	variety	[0,h]

Parting questions:

- Is there a class of one-dimensional subshifts which behaves like a higher-dimensional SFT?
- If not (or to the extent not), why?