Matrix Diagonals

Richard A. Brualdi
Department of Mathematics
University of Wisconsin
Madison, WI 53706
E-mail: brualdi@math.wisc.edu
A discussion of certain ideas related to the diagonals and diagonal structure of a square matrix, with connections to the polytope of doubly stochastic matrices, its simplex faces, ray-nonsingularity, determinantal regions, digraphs, and
S_n: all permutations of $\{1, 2, \ldots, n\}$

\[
\begin{pmatrix}
1 & 2 & \cdots & n \\
i_1 & i_2 & \cdots & i_n \\
\end{pmatrix}
\]

corresponding to positions $(1, i_1), (2, i_2), \ldots, (n, i_n)$ of a matrix of order n.
S_n: all permutations of $\{1, 2, \ldots, n\}$

\[
\begin{pmatrix}
1 & 2 & \cdots & n \\
i_1 & i_2 & \cdots & i_n
\end{pmatrix}
\]

corresponding to positions $(1, i_1), (2, i_2), \ldots, (n, i_n)$ of a matrix of order n.

$S_n \leftrightarrow \mathcal{P}_n$, the set of permutation matrices of order n, that is, $(0, 1)$-matrices of order n with exactly one 1 in each row and column,
S_n: all permutations of $\{1, 2, \ldots, n\}$

$\left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{array} \right)$

corresponding to positions $(1, i_1), (2, i_2), \ldots, (n, i_n)$ of a matrix of order n.

$S_n \leftrightarrow P_n$, the set of permutation matrices of order n, that is, $(0, 1)$-matrices of order n with exactly one 1 in each row and column,
Nonzero diagonals
Nonzero diagonals

In a matrix $A = [a_{ij}]$ of order n, a nonzero diagonal consists of the n positions (k, i_k) of a permutation (matrix), occupied by nonzero entries (or the n nonzero entries $a_{1i_1}, a_{2i_2}, \ldots, a_{ni_n}$ themselves).
Nonzero diagonals

In a matrix $A = [a_{ij}]$ of order n, a **nonzero diagonal** consists of the n positions (k, i_k) of a permutation (matrix), occupied by nonzero entries (or the n nonzero entries $a_{1i_1}, a_{2i_2}, \ldots, a_{ni_n}$ themselves).

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 1 & 4
\end{pmatrix} \rightarrow
\begin{bmatrix}
0 & 2 & 1 & 5 & 0 \\
4 & 2 & 0 & 0 & 1 \\
5 & 3 & 5 & 0 & 6 \\
2 & 0 & 3 & 1 & 2 \\
0 & 7 & 2 & 8 & 0
\end{bmatrix}.
$$
Frobenius-König Theorem
Frobenius-König Theorem

F-K Theorem: The matrix A of order n has a nonzero diagonal iff it has no O_{pq} with $p + q = n + 1$.
Frobenius-König Theorem

F-K Theorem: The matrix A of order n has a nonzero diagonal iff it has no O_{pq} with $p + q = n + 1$.

Equivalently, the nonzero entries of A cannot be covered by fewer than n rows and columns: after permutations of rows and columns

$$A = \begin{bmatrix}
(p \times n - q) & O_{pq} \\
(n - p \times n - q) & (n - p \times q)
\end{bmatrix},$$

where $(n - p) + (n - q) = 2n - (p + q) = 2n - (n + 1) = n - 1$.
Some ideas in terms of S_n or P_n
Some ideas in terms of S_n or \mathcal{P}_n

determinant: $\sum_{\sigma \in S_n} \pm a_{\sigma(1)}a_{\sigma(2)} \cdots a_{\sigma(n)}$.
Some ideas in terms of S_n or P_n

determinant: $\sum_{\sigma \in S_n} \pm a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$.

permanent: $\sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$.

(In both cases one need only sum over the nonzero diagonals)
Some ideas in terms of S_n or P_n

Determinant: $\sum_{\sigma \in S_n} \pm a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$.

Permanent: $\sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$.

(In both cases one need only sum over the nonzero diagonals)

Total support: every nonzero entry belongs to a nonzero diagonal; e.g. $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Some ideas in terms of S_n or P_n

determinant: $\sum_{\sigma \in S_n} \pm a_1\sigma(1)a_2\sigma(2) \cdots a_n\sigma(n)$.
permanent: $\sum_{\sigma \in S_n} a_1\sigma(1)a_2\sigma(2) \cdots a_n\sigma(n)$.
(In both cases one need only sum over the nonzero diagonals)
total support: every nonzero entry belongs to a nonzero diagonal; e.g.
\[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
fully indecomposable: total support and deletion of a row and column always leaves a matrix with a nonzero diagonal; e.g.
\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\]
Some ideas in terms of S_n or P_n

determinant: $\sum_{\sigma \in S_n} \pm a_1\sigma(1)a_2\sigma(2) \cdots a_n\sigma(n)$.

permanent: $\sum_{\sigma \in S_n} a_1\sigma(1)a_2\sigma(2) \cdots a_n\sigma(n)$.

(In both cases one need only sum over the nonzero diagonals)

total support: every nonzero entry belongs to a nonzero diagonal; e.g. \[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

fully indecomposable: total support and deletion of a row and column always leaves a matrix with a nonzero diagonal; e.g. \[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]
Let A be a matrix of order n whose nonzero entries are labeled with different symbols $V = \{a, b, c, \ldots\}$. The diagonal hypergraph $D(A)$ of A has vertex set V and edges (of size n) corresponding to the nonzero diagonals of A.
Diagonal Hypergraph

Let A be a matrix of order n whose nonzero entries are labeled with different symbols $V = \{a, b, c, \ldots\}$. The **diagonal hypergraph** $D(A)$ of A has vertex set V and edges (of size n) corresponding to the nonzero diagonals of A.

Example:

\[
A = \begin{bmatrix}
a & b & 0 \\
0 & c & d \\
e & f & g \\
\end{bmatrix}
\]

\{\{a, c, g\}, \{a, d, f\}, \{b, d, e\}\}.
Diagonal Hypergraph

Let A be a matrix of order n whose nonzero entries are labeled with different symbols $V = \{a, b, c, \ldots\}$. The **diagonal hypergraph** $\mathcal{D}(A)$ of A has vertex set V and edges (of size n) corresponding to the nonzero diagonals of A.

Example:

$$
A = \begin{bmatrix}
 a & b & 0 \\
 0 & c & d \\
 e & f & g \\
\end{bmatrix}
\quad \{\{a, c, g\}, \{a, d, f\}, \{b, d, e\}\}.
$$

Let B, a matrix of order n, have the same number of nonzero entries as A. A and B have **isomorphic diagonal hypergraphs** provided the nonzero entries of B can be labeled with V so that $\mathcal{D}(A) = \mathcal{D}(B)$. The resulting bijection between the nonzero entries of A and those of B is a **diagonal preserver**.
Example
Example:

Example:

$$A = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & h & i \\
0 & 0 & j & 0 & k \\
0 & 0 & 0 & l & m \\
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & j & 0 \\
0 & 0 & h & 0 & l \\
0 & 0 & i & k & m \\
\end{bmatrix}$$

have the same nonzero diagonals:

$$\{a, c, g, k, l\}, \{a, c, j, h, m\}, \{a, c, j, i, l\}, \{a, f, e, k, l\},$$

so we have a **diagonal preserver** between A and B.
Example:

A = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & h & i \\
0 & 0 & j & 0 & k \\
0 & 0 & 0 & l & m \\
\end{bmatrix}\quad \text{and} \quad B = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & j & 0 \\
0 & 0 & h & 0 & l \\
0 & 0 & i & k & m \\
\end{bmatrix}

have the same nonzero diagonals:

\{a, c, g, k, l\}, \{a, c, j, h, m\}, \{a, c, j, i, l\}, \{a, f, e, k, l\},

so we have a diagonal preserver between \(A\) and \(B\).
Example:

Example:

\[
A = \begin{bmatrix}
0 & a & b & 0 & 0 \\
& c & d & e & 0 & 0 \\
& & f & 0 & g & h & i \\
& & & 0 & 0 & j & 0 \\
& & & & 0 & 0 & l & m
\end{bmatrix}
\]

and

\[
B = \begin{bmatrix}
0 & a & b & 0 & 0 \\
& c & d & e & 0 & 0 \\
& & f & 0 & g & j & 0 \\
& & & 0 & 0 & h & 0 & l \\
& & & & 0 & 0 & i & k & m
\end{bmatrix}
\]

have the same nonzero diagonals:

\[
\{a, c, g, k, l\}, \{a, c, j, h, m\}, \{a, c, j, i, l\}, \{a, f, e, k, l\},
\]

so we have a diagonal preserver between \(A\) and \(B\). Row and column permutations and transposition give diagonal preservers.
Example again
Example again

Example:

\[
A = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & h & i \\
0 & 0 & j & 0 & k \\
0 & 0 & 0 & l & m
\end{bmatrix}
\]

and

\[
B = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & j & 0 \\
0 & 0 & h & 0 & l \\
0 & 0 & i & k & m
\end{bmatrix}
\]
Example again

Example:

\[
A = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & h & i \\
0 & 0 & j & 0 & k \\
0 & 0 & 0 & l & m
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
0 & a & b & 0 & 0 \\
c & d & e & 0 & 0 \\
f & 0 & g & j & 0 \\
0 & 0 & h & 0 & l \\
0 & 0 & i & k & m
\end{bmatrix}
\]

have the same nonzero diagonals:

\[
\{a, c, g, k, l\}, \{a, c, j, h, m\}, \{a, c, j, i, l\}, \{a, f, e, k, l\},
\]

so we have a diagonal preserver between \(A\) and \(B\) but it is not a row or column permutation or transposition, or composition of such.
Partial transposition
Partial transposition

The preceding example is an example of a partial transposition:
Partial transposition

The preceding example is an example of a **partial transposition**:

\[
\begin{bmatrix}
** & \alpha & \beta \\
\gamma & A_1 & O \\
\delta & O & A_2 \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
** & \alpha & \delta^T \\
\gamma & A_1 & O \\
\beta^T & O & A_2^T \\
\end{bmatrix}
\]
Partial transposition

The preceding example is an example of a **partial transposition**:

$$
\begin{bmatrix}
** & \alpha & \beta \\
\gamma & A_1 & O \\
\delta & O & A_2 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
** & \alpha & \delta^T \\
\gamma & A_1 & O \\
\beta^T & O & A_2^T \\
\end{bmatrix}
$$

Note:

1. Transposition can be regarded as a special case of partial transposition (the matrix A_1 is empty).
2. Like row and column permutations, a partial transposition preserves nonzero diagonals.
3. A partial transposition requires a p by q zero submatrix and a complementary q by p zero submatrix where $p + q = n - 1$.
A Conjecture
A Conjecture

RAB and J. Ross Conjecture 1981: Every diagonal preserver between matrices A and B of order n can be accomplished by a sequence of partial transpositions, followed by row and column permutations.
A Conjecture

RAB and J. Ross Conjecture 1981: Every diagonal preserver between matrices A and B of order n can be accomplished by a sequence of partial transpositions, followed by row and column permutations.

This was proved under the assumption that the labels of n nonzero positions of A are the labels of n nonzero positions in a row or column of B. Recall the example:

$$A = \begin{bmatrix} 0 & a & b & 0 & 0 \\ c & d & e & 0 & 0 \\ f & 0 & g & h & i \\ 0 & 0 & j & 0 & k \\ 0 & 0 & 0 & l & m \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & a & b & 0 & 0 \\ c & d & e & 0 & 0 \\ f & 0 & g & j & 0 \\ 0 & 0 & h & 0 & l \\ 0 & 0 & i & k & m \end{bmatrix}$$
Counterexample to the conjecture
Counterexample to the conjecture

\[
A = \begin{bmatrix}
a & b & c & 0 & 0 & 0 \\
d & e & f & 0 & 0 & 0 \\
0 & 0 & k & l & m & 0 \\
0 & 0 & r & s & t & 0 \\
w & 0 & 0 & 0 & u & v \\
z & 0 & 0 & 0 & x & y \\
\end{bmatrix}
\]

and \[
A^* = \begin{bmatrix}
a & b & c & 0 & 0 & 0 \\
d & e & f & 0 & 0 & 0 \\
0 & 0 & u & v & w & 0 \\
0 & 0 & x & y & z & 0 \\
m & 0 & 0 & 0 & k & l \\
t & 0 & 0 & 0 & r & s \\
\end{bmatrix}
\]

have the same set of 16 diagonals.
Counterexample to the conjecture

\[A = \begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & k & l & m & 0 \\
 0 & 0 & r & s & t & 0 \\
 w & 0 & 0 & 0 & u & v \\
 z & 0 & 0 & 0 & x & y \\
\end{bmatrix} \quad \text{and} \quad A^* = \begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & u & v & w & 0 \\
 0 & 0 & x & y & z & 0 \\
 m & 0 & 0 & 0 & k & l \\
 t & 0 & 0 & 0 & r & s \\
\end{bmatrix} \]

have the same set of 16 diagonals.

But no partial transposition is possible since there do not exist complementary \(p \) by \(q \) and \(q \) by \(p \) zero submatrices with \(p + q = 5 \).
Counterexample to the conjecture

\[
A = \begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & k & l & m & 0 \\
 0 & 0 & r & s & t & 0 \\
 w & 0 & 0 & 0 & u & v \\
 z & 0 & 0 & 0 & x & y \\
\end{bmatrix}
\quad \text{and} \quad
A^* = \begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & u & v & w & 0 \\
 0 & 0 & x & y & z & 0 \\
 m & 0 & 0 & 0 & k & l \\
 t & 0 & 0 & 0 & r & s \\
\end{bmatrix}
\]

have the same set of 16 diagonals.

But no partial transposition is possible since there do not exist complementary \(p \) by \(q \) and \(q \) by \(p \) zero submatrices with \(p + q = 5 \).

So the conjecture is false.
Example again
Example again

\[
\begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & k & l & m & 0 \\
 0 & 0 & r & s & t & 0 \\
 w & 0 & 0 & 0 & u & v \\
 z & 0 & 0 & 0 & x & y \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 a & b & c & 0 & 0 & 0 \\
 d & e & f & 0 & 0 & 0 \\
 0 & 0 & u & v & w & 0 \\
 0 & 0 & x & y & z & 0 \\
 m & 0 & 0 & 0 & k & l \\
 t & 0 & 0 & 0 & r & s \\
\end{bmatrix}
\]

(a diagonal preserver)
Bi-transposition
Bi-transposition

The preceding example is an example of what we call a bi-transposition:

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f
\end{bmatrix} \leftarrow A_1, \ p \text{ by } p + 1
\]

\[
\begin{bmatrix}
 k & l & m \\
 r & s & t
\end{bmatrix} \leftarrow A_2, \ q \text{ by } q + 1
\]

\[
\begin{bmatrix}
 w & u & v \\
 z & x & y
\end{bmatrix} \leftarrow A_3, \ r \text{ by } r + 1
\]
Characterization of diagonal preservers
RAB, Loebl, Pangrác 2006: Let A and B be fully indecomposable matrices of order n. Suppose there is a bijection ϕ between the nonzero positions of A and those of B that gives a bijection between the nonzero diagonals of A and those of B. Then ϕ results from a sequence of **partial transpositions** and **bi-transpositions** which when applied to A give PBQ or $PBTQ$ for some permutation matrices P and Q.
Doubly Stochastic Matrices

doubly stochastic matrix: a square nonnegative matrix with all row and column sums equal to 1.
Doubly Stochastic Matrices

doubly stochastic matrix: a square nonnegative matrix with all row and column sums equal to 1. Equivalently, by the F-K theorem, a convex combination of permutation matrices; e.g.

\[
\begin{bmatrix}
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{bmatrix}
= \frac{1}{4}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
+ \frac{1}{4}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

\[+
\frac{1}{4}
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
+ \frac{1}{4}
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\]
Doubly Stochastic Matrices

doubly stochastic matrix: a square nonnegative matrix with all row and column sums equal to 1. Equivalently, by the F-K theorem, a convex combination of permutation matrices; e.g.

\[
\begin{bmatrix}
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\end{bmatrix}
= \frac{1}{4}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}
+ \frac{1}{4}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{bmatrix}
+ \frac{1}{4}
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
+ \frac{1}{4}
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}.
\]

The doubly stochastic matrices of order \(n \) form a convex polytope \(\Omega_n \) of dimension \((n - 1)^2\).
Matrices with total support are geometric objects. **Faces** of Ω_n correspond to the $(0, 1)$-matrices $A = [a_{ij}]$ of order n with total support:

$$A \leftrightarrow \mathcal{F}(A) = \{X = [x_{ij}], X \in \Omega_n, x_{ij} \leq a_{ij}\}.$$
Doubly stochastic polytope Ω_n

Matrices with total support are geometric objects. **Faces** of Ω_n correspond to the $(0, 1)$-matrices $A = [a_{ij}]$ of order n with total support:

$$A \leftrightarrow \mathcal{F}(A) = \{X = [x_{ij}], X \in \Omega_n, x_{ij} \leq a_{ij}\}.$$

Extreme points are the permutation matrices of order n with P and Q determining an edge (1-dim. face) iff, with respect to P, Q has a unique cycle of length ≥ 2, that is $P^{-1}Q$ has a unique cycle of length ≥ 2.
Doubly stochastic polytope Ω_n

Matrices with total support are geometric objects. **Faces** of Ω_n correspond to the $(0, 1)$-matrices $A = [a_{ij}]$ of order n with total support:

$$A \leftrightarrow F(A) = \{X = [x_{ij}], X \in \Omega_n, x_{ij} \leq a_{ij}\}.$$

Extreme points are the permutation matrices of order n with P and Q determining an edge (1-dim. face) iff, with respect to P, Q has a unique cycle of length ≥ 2, that is $P^{-1}Q$ has a unique cycle of length ≥ 2.

$\text{per} A = \text{number of extreme points of the face } F(A)$.
Doubly stochastic polytope Ω_n

Matrices with total support are geometric objects. Faces of Ω_n correspond to the $(0, 1)$-matrices $A = [a_{ij}]$ of order n with total support:

$$A \leftrightarrow F(A) = \{X = [x_{ij}], X \in \Omega_n, x_{ij} \leq a_{ij}\}.$$

Extreme points are the permutation matrices of order n with P and Q determining an edge (1-dim. face) iff, with respect to P, Q has a unique cycle of length ≥ 2, that is $P^{-1}Q$ has a unique cycle of length ≥ 2.

$\text{per}A = \text{number of extreme points of the face } F(A)$.

If A is fully indecomposable, then $\dim F = \#(A) - 2n + 1$.
Example

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$, fully indecomposable, $\text{per} \ A = 9$.
Example

\[A = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{bmatrix}, \text{ fully indecomposable, } \text{per} A = 9. \]

\(\mathcal{F}(A) \) is an 8-dimensional simplex in \(\mathbb{R}^{25} \).
Determinantal regions

Let A be a complex matrix of order n whose entries are either 0 or of the form $e^{i\theta}$. The determinantal region of A is

$$R_{\text{det}}(A) = \{\det X \circ A : X \text{ is a positive matrix}\}.$$

The matrix is ray-nonsingular iff $0 \notin R_{\text{det}}(A)$.
Determinantal regions

Let A be a complex matrix of order n whose entries are either 0 or of the form $e^{i\theta}$. The **determinantal region** of A is

$$R_{\text{det}}(A) = \{ \det X \circ A : X \text{ is a positive matrix} \}.$$

The matrix is **ray-nonsingular** iff $0 \notin R_{\text{det}}(A)$.

For example,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 & -i & -1 \\ -1 & 1 & -i \\ -1 & i & -1 \end{bmatrix}$$

The signed diagonal products of the latter matrix are $1, -1, i$. Since 0 is on the boundary of the region they determine, it is ray-nonsingular.
Determinantal regions

Let A be a complex matrix of order n whose entries are either 0 or of the form $e^{i\theta}$. The determinantal region of A is

$$R_{\det}(A) = \{ \det X \circ A : X \text{ is a positive matrix} \}.$$

The matrix is ray-nonsingular iff $0 \not\in R_{\det}(A)$. For example,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} -1 & -i & -1 \\ -1 & -1 & -i \\ -1 & i & -1 \end{bmatrix}$$

The signed diagonal products of the latter matrix are $1, -1, i$. Since 0 is on the boundary of the region they determine, it is ray-nonsingular.
Isolated Sets of Diagonals

(MacDonald, Olesky, Tsatsomeros, van den Driessche 1997) The set $\mathcal{D}(A)$ of nonzero diagonals of A is an isolated set of diagonals of A provided that
Isolated Sets of Diagonals

(MacDonald, Olesky, Tsatsomeros, van den Driessche 1997) The set $\mathcal{D}(A)$ of nonzero diagonals of A is an isolated set of diagonals of A provided that

- Every nonzero diagonal in $\mathcal{D}(A)$ contains an entry which is not in any of the other diagonals of $\mathcal{D}(A)$.
Example

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
\end{bmatrix}
\]
Example

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \]

Then \(|D(A)| = 4\) and \(D(A)\) is an isolated set of diagonals of \(A\).
Example

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \rightarrow \quad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 0 \end{bmatrix}. \]

Then \(|\mathcal{D}(A)| = 4\) and \(\mathcal{D}(A)\) is an isolated set of diagonals of \(A\).

Let \(A\) be a complex matrix. Any positive linear combination of the signed diagonal products corresponding to an isolated set of diagonals of \(A\) is in the closure of \(R_{\det}(A)\). (Don’t need closure if the isolated set of diagonals is \(\mathcal{D}(A)\).)
Example continued

$$\text{det} \left(\begin{bmatrix} y_1 & y_2 & 1 \\ y_3 & y_4 & 1 \\ 1 & 1 & 1 \end{bmatrix} \circ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 0 \end{bmatrix} \right) =$$
Example continued

\[
\begin{vmatrix}
\begin{bmatrix}
y_1 & y_2 & 1 \\
y_3 & y_4 & 1 \\
1 & 1 & 1
\end{bmatrix}
\end{vmatrix}
\circ
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 0
\end{bmatrix}
\]

\[
y_1(-a_{11}a_{23}a_{32}) + y_2(a_{12}a_{23}a_{31}) + y_3(a_{13}a_{21}a_{32}) + y_4(-a_{13}a_{22}a_{31})
\]

is in \(R_{\text{det}}(A) \).
Digraph of a matrix

If $A = [a_{ij}]$ is a matrix of order n, then the digraph $\Gamma(A)$ has vertices $1, 2, \ldots, n$ and edges $i \rightarrow j$ provided that $a_{ij} \neq 0$.
If $A = [a_{ij}]$ is a matrix of order n, then the digraph $\Gamma(A)$ has vertices $1, 2, \ldots, n$ and edges $i \rightarrow j$ provided that $a_{ij} \neq 0$.

For example, the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 5 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ has digraph
Characterization I of $\mathcal{D}(A)$ isolated

(J. Shao, L.-Z Ren, and Q. Wu 2006/07): WLOG assume that $I_n \leq A$. Then $\mathcal{D}(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:
Characterization I of $D(A)$ isolated

(J. Shao, L.-Z Ren, and Q. Wu 2006/07): WLOG assume that $I_n \leq A$. Then $D(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:

1. In the digraph $\Gamma(A)$ of A there is a vertex that belongs to all directed cycles of length ≥ 1.

2. $\Gamma(A)$ is free-cyclic meaning that each cycle contains an edge that is not an edge of any other directed cycle.
Characterization II of $\mathcal{D}(A)$ isolated

(J. Shao, L.-Z Ren, and Q.Wu): WLOG assume that $I_n \leq A$. Then $\mathcal{D}(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:
Characterization II of \(\mathcal{D}(A) \) isolated

(J. Shao, L.-Z Ren, and Q.Wu): WLOG assume that \(I_n \leq A \). Then \(\mathcal{D}(A) \) is an isolated set of diagonals iff the following two conditions are satisfied:

- In the digraph \(\Gamma(A) \) of \(A \) there is a vertex that belongs to all directed cycles of length \(> 1 \).
- \(\Gamma(A) \) does not contain a subdigraph consisting of a cycle

\[
1 \to 2 \to 3 \to \cdots \to k \to 1
\]

along with “path-chords”

\[
1 \to \cdots \to p \text{ and } q \to \cdots \to r
\]

where \(3 \leq p < q < r \leq k \).
Let A be a fully indecomposable matrix of order $n \geq 2$. Then the following are equivalent:
Characterization III of $\mathcal{D}(A)$ isolated

Let A be a fully indecomposable matrix of order $n \geq 2$. Then the following are equivalent:

- $\mathcal{D}(A)$ is an isolated set of diagonals.
- A has property N, and cannot be contracted to J_3.
- There exists an integer p with $1 \leq p \leq n - 2$ and permutation matrices P and Q such that

 \[
 PAQ = \begin{bmatrix}
 A_3 & A_1 \\
 A_2 & O
 \end{bmatrix}
 \]

 where A_3 is $n - p$ by $p + 1$, O is p by $n - p - 1$, and A_1 and A_2^T are vertex-edge incidence matrices of trees.

- The face $\mathcal{F}(A)$ of Ω_n is a simplex.
Property N and contraction

Property N: For each pair X_1 and X_2 of complementary square submatrices of A,\[PAQ = \begin{bmatrix} X_1 & * \\ * & X_2 \end{bmatrix}, \]
per $X_1 \leq 1$ or per $X_2 \leq 1$.
Property N and contraction

Property N: For each pair X_1 and X_2 of complementary square submatrices of A,

$$PAQ = \begin{bmatrix} X_1 & * \\ * & X_2 \end{bmatrix},$$

per $X_1 \leq 1$ or per $X_2 \leq 1$.

Contraction:

$$\begin{pmatrix} 1 & \alpha \\ 1 & \beta \\ 0 & B \\ 0 & \vdots \end{pmatrix} \rightarrow \begin{pmatrix} \alpha + \beta \\ B \end{pmatrix}.$$
There exists an integer p with $1 \leq p \leq n - 2$ and permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_3 & A_1 \\ A_2 & O \end{bmatrix}$$

where A_3 is $n - p$ by $p + 1$, O is p by $n - p - 1$, and A_1 and A_2^T are vertex-edge incidence matrices of trees.
There exists an integer p with $1 \leq p \leq n - 2$ and permutation matrices P and Q such that

$$PAQ = \begin{bmatrix} A_3 & A_1 \\ A_2 & O \end{bmatrix}$$

where A_3 is $n - p$ by $p + 1$, O is p by $n - p - 1$, and A_1 and A_2^T are vertex-edge incidence matrices of trees.

Each 1 in A_3 is on a unique nonzero diagonal, since deleting a row of the vertex-incidence matrix of a tree leaves a square matrix with a unique nonzero diagonal.
Special Form

There exists an integer \(p \) with \(1 \leq p \leq n - 2 \) and permutation matrices \(P \) and \(Q \) such that

\[
P AQ = \begin{bmatrix}
A_3 & A_1 \\
A_2 & O
\end{bmatrix}
\]

where \(A_3 \) is \(n - p \) by \(p + 1 \), \(O \) is \(p \) by \(n - p - 1 \), and \(A_1 \) and \(A_2^T \) are vertex-edge incidence matrices of trees.

Each \(1 \) in \(A_3 \) is on a unique nonzero diagonal, since deleting a row of the vertex-incidence matrix of a tree leaves a square matrix with a unique nonzero diagonal.

Remark: A matrix of this form is fully indecomposable iff it has at least two 1’s in each row and column.
The face $\mathcal{F}(A)$ of Ω_n is a simplex.
Simplex

- The face \(\mathcal{F}(A) \) of \(\Omega_n \) is a simplex.

- For each pair of distinct permutation matrices \(P, Q \leq A \),
 \[P^{-1}Q \] has at most one (permutation) cycle of length \(\geq 2 \).
Simplex

- The face $\mathcal{F}(A)$ of Ω_n is a simplex.

- For each pair of distinct permutation matrices $P, Q \leq A$, $P^{-1}Q$ has at most one (permutation) cycle of length ≥ 2.

Remark: The only other faces of Ω_n with this property are $\mathcal{F}(A)$ where A either equals J_3 or can be contracted to J_3.

Some equivalences

RAB and P. Gibson (1977) showed that \textit{simplex face}, \textit{property} N \textit{and non-contractibility to} J_3, \textit{and special form} are equivalent.
Some equivalences

RAB and P. Gibson (1977) showed that simplex face, property \(N \) and non-contractibility to \(J_3 \), and special form are equivalent.

The special form

\[
PAQ = \begin{bmatrix}
A_3 & A_1 \\
A_2 & O
\end{bmatrix}
\]

where \(A_3 \) is \(n-p \) by \(p+1 \), \(O \) is \(p \) by \(n-p-1 \), and \(A_1 \) and \(A_2^T \) are vertex-edge incidence matrices of trees. implies that there is a 1-1 correspondence between nonzero diagonals of \(A \) and the 1’s in \(A_3 \) and hence \(D(A) \) is isolated.
Some equivalences continued

Not Property N implies that there exist X_1 and X_2, complementary square submatrices of A, such that $\text{per } X_1 \geq 2$ and $\text{per } X_2 \geq 2$. This gives 4 permutation matrices $P \leq A$ none of which contains a 1 not in any other nonzero diagonal. So $\mathcal{D}(A)$ is not isolated.
Some equivalences continued

Not Property \(N \) implies that there exist \(X_1 \) and \(X_2 \), complementary square submatrices of \(A \), such that \(\text{per} \ X_1 \geq 2 \) and \(\text{per} \ X_2 \geq 2 \). This gives 4 permutation matrices \(P \leq A \) none of which contains a 1 not in any other nonzero diagonal. So \(D(A) \) is not isolated.

Since \(J_3 \) has the property that every 1 is on two nonzero diagonals, every matrix contractable to \(J_3 \) also has this property, and so cannot have an isolated set of diagonals.
Some equivalences continued

Not Property \(N \) implies that there exist \(X_1 \) and \(X_2 \), complementary square submatrices of \(A \), such that \(\text{per } X_1 \geq 2 \) and \(\text{per } X_2 \geq 2 \). This gives 4 permutation matrices \(P \leq A \) none of which contains a 1 not in any other nonzero diagonal. So \(\mathcal{D}(A) \) is not isolated.

Since \(J_3 \) has the property that every 1 is on two nonzero diagonals, every matrix contractable to \(J_3 \) also has this property, and so cannot have an isolated set of diagonals.

Thus we have the equivalences:

Characterization III of $\mathcal{D}(A)$ isolated

Let A be a fully indecomposable matrix of order $n \geq 2$. Then the following are equivalent:

- $\mathcal{D}(A)$ is an isolated set of diagonals.
- A has property N, and cannot be contracted to J_3.
- There exists an integer p with $1 \leq p \leq n - 2$ and permutation matrices P and Q such that
 $$PAQ = \begin{bmatrix}
A_3 & A_1 \\
A_2 & O
\end{bmatrix}$$
 where A_3 is $n - p$ by $p + 1$, O is p by $n - p - 1$, and A_1 and A_2^T are vertex-edge incidence matrices of trees.
- The face $\mathcal{F}(A)$ of Ω_n is a simplex.
Recall: If $I_n \leq A$, then $D(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:

- In the digraph $\Gamma(A)$ of A there is a vertex that belongs to all directed cycles of length > 1.
- $\Gamma(A)$ is free-cyclic meaning that each cycle contains an edge that is not an edge of any other directed cycle.
Digraph characterization

Recall: If $I_n \leq A$, then $\mathcal{D}(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:

1. In the digraph $\Gamma(A)$ of A there is a vertex that belongs to all directed cycles of length > 1.

2. $\Gamma(A)$ is free-cyclic meaning that each cycle contains an edge that is not an edge of any other directed cycle.

Under the assumption that $I_n \leq A$, it is fairly straightforward to check that these two conditions are equivalent to $\mathcal{D}(A)$ being isolated.
Digraph characterization

Recall: If $I_n \leq A$, then $D(A)$ is an isolated set of diagonals iff the following two conditions are satisfied:

1. In the digraph $\Gamma(A)$ of A there is a vertex that belongs to all directed cycles of length > 1.

2. $\Gamma(A)$ is free-cyclic meaning that each cycle contains an edge that is not an edge of any other directed cycle.

Under the assumption that $I_n \leq A$, it is fairly straightforward to check that these two conditions are equivalent to $D(A)$ being isolated.

What is the connection between the special form and this digraph characterization?
Special form and digraph

Special form implies that A has a zero submatrix $O_{p,n-p-1}$. With the assumption that $I_n \leq A$, the row indices and column indices of $O_{p,n-p-1}$ must be disjoint, and by simultaneous permutations (so digraph is the same), we can assume

$$A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix}$$

(A_2 is $p \times p + 1$, A_1 is $n - p \times n - p - 1$).
Special form and digraph

Special form implies that A has a zero submatrix $O_{p,n-p-1}$. With the assumption that $I_n \leq A$, the row indices and column indices of $O_{p,n-p-1}$ must be disjoint, and by simultaneous permutations (so digraph is the same), we can assume

$$A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix} \quad (A_2 \text{ is } p \times p + 1, \ A_1 \text{ is } n - p \times n - p - 1).$$

A_3 has a 1 in its upper right corner (position $(p + 1, p + 1)$ of A). Crossing out its row and column (so crossing out last column of A_2 and first row of A_1) gives A_2' (order p) and A_1' (order $n - p - 1$) with $I_p \leq A_2'$ and $I_{n-p-1} \leq A_1'$.
\[A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix} \quad (A_2 \text{ is } p \times p + 1, \ A_1 \text{ is } n - p \times n - p - 1). \]
\[A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix} \] (\(A_2 \) is \(p \times p + 1 \), \(A_1 \) is \(n-p \times n-p-1 \)).

\(A_1 \) and \(A_2^T \) being vertex-edge incidence matrices of trees, \(A_2' \) and \(A_1' \) can be assumed to be triangular. Thus each cycle of the digraph of \(A \) contains vertex \(p + 1 \).
Special form and digraph continued

\[A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix} \]
\((A_2 \text{ is } p \times p + 1, A_1 \text{ is } n - p \times n - p - 1)\).

\(A_1\) and \(A_2^T\) being vertex-edge incidence matrices of trees, \(A_2'\) and \(A_1'\) can be assumed to be triangular. Thus each cycle of the digraph of \(A\) contains vertex \(p + 1\).

Also each 1 in \(A_3\) other than the 1 (corresponds to an edge) on the main diagonal is in a unique nonzero diagonal and this edge is in a unique cycle.
\[A = \begin{bmatrix} A_2 & O_{p,n-p-1} \\ A_3 & A_1 \end{bmatrix} \]
\((A_2 \text{ is } p \times p + 1, A_1 \text{ is } n - p \times n - p - 1).\)

\(A_1\) and \(A_2^T\) being vertex-edge incidence matrices of trees, \(A_2'\) and \(A_1'\) can be assumed to be triangular. Thus each cycle of the digraph of \(A\) contains vertex \(p + 1\).

Also each 1 in \(A_3\) other than the 1 (corresponds to an edge) on the main diagonal is in a unique nonzero diagonal and this edge is in a unique cycle.

Thus the digraph is free-cyclic and there is a vertex belonging to all cycles of length \(\geq 2\).
Example

\[
\begin{bmatrix}
A_2 & O_{p,n-p-1} \\
A_3 & A_1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\((n = 8, p = 3) \)
Some references

4. R.A. Brualdi and J.-Y. Shao, Isolated sets of diagonals, diagonal hypergraphs, and simplices of doubly stochastic matrices, submitted