The Bruhat Order for (0,1)-Matrices
The Bruhat Order for (0,1)-Matrices

Richard A. Brualdi
Department of Mathematics
University of Wisconsin - Madison
Madison, WI 53706, USA
E-mail: brualdi@math.wisc.edu
The Bruhat Order for (0,1)-Matrices

Richard A. Brualdi
Department of Mathematics
University of Wisconsin - Madison
Madison, WI 53706, USA
E-mail: brualdi@math.wisc.edu

Outline

1. Bruhat order on S_n
Outline

I. Bruhat order on S_n

II. $\mathcal{A}(R, S)$
Outline

I. Bruhat order on S_n

II. $A(R, S)$

III. Bruhat orders on $A(R, S)$
Outline

I. Bruhat order on S_n

II. $\mathcal{A}(R, S)$

III. Bruhat orders on $\mathcal{A}(R, S)$

IV. Conclusion/Open Problems
Part I. Bruhat order on S_n
Definition of Bruhat order

S_n denotes the set of permutations π of $\{1, 2, \ldots, n\}$, equivalently the set of permutation matrices of order n.
Definition of Bruhat order

\(\mathcal{S}_n \) denotes the set of permutations \(\pi \) of \(\{1, 2, \ldots, n\} \), equivalently the set of permutation matrices of order \(n \).

If \(\pi \) and \(\tau \) are in \(\mathcal{S}_n \), then

\[
\pi \preceq_B \tau
\]

provided \(\pi \) can be obtained from \(\tau \) by a sequence of inversion-reducing transpositions of the form

\[
(i_1, \ldots, i_k, \ldots, i_l, \ldots, i_n) \rightarrow (i_1, \ldots, i_l, \ldots, i_k, \ldots, i_n)
\]

where \(i_k > i_l \).
Definition of Bruhat order

S_n denotes the set of permutations π of $\{1, 2, \ldots, n\}$, equivalently the set of permutation matrices of order n. If π and τ are in S_n, then

$$\pi \preceq_B \tau$$

provided π can be obtained from τ by a sequence of inversion-reducing transpositions of the form

$$(i_1, \ldots, i_k, \ldots, i_l, \ldots, i_n) \rightarrow (i_1, \ldots, i_l, \ldots, i_k, \ldots, i_n)$$

where $i_k > i_l$.

Example ($n = 5$):

$$(3, 5, 4, 1, 2) \rightarrow (3, 1, 4, 5, 2) \rightarrow (2, 1, 4, 5, 3).$$
In terms of Permutation Matrices
In terms of Permutation Matrices

An inversion-reducing transposition replaces a submatrix of order 2 equal to $L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ by $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$:

$L_2 \rightarrow I_2$.
In terms of Permutation Matrices

An inversion-reducing transposition replaces a submatrix of order 2 equal to $L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ by $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$:

$$L_2 \rightarrow I_2.$$
In terms of Permutation Matrices

An inversion-reducing transposition replaces a submatrix of order 2 equal to $L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ by $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$:

$$L_2 \rightarrow I_2.$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

$$3, 5, 4, 1, 2 \rightarrow 3, 1, 4, 5, 2.$$
Basic Properties
Basic Properties

1. Partial order graded by the number of inversions.
Basic Properties

1. Partial order graded by the number of inversions.

2. The identity permutation \((1, 2, \ldots, n)\) (with no inversions) is the unique minimal permutation and the anti-identity permutation \((n, n - 1, \ldots, 2, 1)\) (with \(n(n - 1)/2\) inversions) is the unique maximal permutation.
Basic Properties

1. Partial order graded by the number of inversions.

2. The identity permutation \((1, 2, \ldots, n)\) (with no inversions) is the unique minimal permutation and the anti-identity permutation \((n, n-1, \ldots, 2, 1)\) (with \(n(n-1)/2\) inversions) is the unique maximal permutation.

3. In terms of permutation matrices \(I_n\) is the unique minimal and \(L_n\) (1’s in positions \((1, n), (2, n-2), \ldots, (n, 1)\)) is the unique maximal permutation matrix.
Basic Properties

1. Partial order graded by the number of inversions.

2. The identity permutation $(1, 2, \ldots, n)$ (with no inversions) is the unique minimal permutation and the anti-identity permutation $(n, n-1, \ldots, 2, 1)$ (with $n(n-1)/2$ inversions) is the unique maximal permutation.

3. In terms of permutation matrices I_n is the unique minimal and L_n (1’s in positions $(1, n), (2, n-2), \ldots, (n, 1)$) is the unique maximal permutation matrix.

Example:

$$L_4 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$
Basic Properties continued
Cover relation: If P_1 is obtained from P_2 by an $L_2 \rightarrow I_2$ interchange, then P_2 covers P_1 (or P_1 is covered by P_2) in the Bruhat order provided the submatrix of consecutive rows and columns “spanned” by the L_2-submatrix of P_2 contains no other 1’s.
Cover relation: If P_1 is obtained from P_2 by an $L_2 \rightarrow I_2$ interchange, then P_2 covers P_1 (P_1 is covered by P_2) in the Bruhat order provided the submatrix of consecutive rows and columns “spanned” by the L_2-submatrix of P_2 contains no other 1’s.

For example,

\[
P_2 = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\text{ covers }
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
Cover relation: If P_1 is obtained from P_2 by an $L_2 \rightarrow I_2$ interchange, then P_2 covers P_1 (P_1 is covered by P_2) in the Bruhat order provided the submatrix of consecutive rows and columns “spanned” by the L_2-submatrix of P_2 contains no other 1’s.

For example,

$$P_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$ covers $P_1 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

$4, 5, 1, 6, 2, 3$ covers $4, 2, 1, 6, 5, 3$
Equivalent ways to define Bruhat order
Equivalent ways to define Bruhat order

\[\sigma = (i_1, i_2, \ldots, i_n) \text{ and } \tau = (j_1, j_2, \ldots, j_n) \] permutations of \(\{1, 2, \ldots, n\} \). For each \(k \) with \(1 \leq k \leq n - 1 \), let \(i_{1k}, i_{2k}, \ldots, i_{kk} \) be the increasing rearrangement of \(i_1, i_2, \ldots, i_k \), with \(j_{1k}, j_{2k}, \ldots, j_{kk} \) defined in a similar way.
Equivalent ways to define Bruhat order

\[\sigma = (i_1, i_2, \ldots, i_n) \text{ and } \tau = (j_1, j_2, \ldots, j_n) \] permutations of \(\{1, 2, \ldots, n\} \). For each \(k \) with \(1 \leq k \leq n - 1 \), let \(i_{1k}, i_{2k}, \ldots, i_{kk} \) be the increasing rearrangement of \(i_1, i_2, \ldots, i_k \), with \(j_{1k}, j_{2k}, \ldots, j_{kk} \) defined in a similar way.

\(\sigma \preceq_B \tau \) if and only if \(i_{pk} \leq j_{pk} \) for all \(p \) and \(k \) with \(1 \leq p \leq k \leq n - 1 \).
Equivalent ways to define Bruhat order

\[\sigma = (i_1, i_2, \ldots, i_n) \text{ and } \tau = (j_1, j_2, \ldots, j_n) \] permutations of \{1, 2, \ldots, n\}. For each \(k \) with \(1 \leq k \leq n - 1 \), let \(i_{1k}, i_{2k}, \ldots, i_{kk} \) be the increasing rearrangement of \(i_1, i_2, \ldots, i_k \), with \(j_{1k}, j_{2k}, \ldots, j_{kk} \) defined in a similar way.

\(\sigma \preceq_B \tau \) if and only if \(i_{pk} \leq j_{pk} \) for all \(p \) and \(k \) with \(1 \leq p \leq k \leq n - 1 \).

Example: if \(\sigma = (2, 1, 4, 5, 3) \) and \(\tau = (3, 1, 5, 4, 2) \), then \(\sigma \preceq_B \tau \) because of the entrywise inequalities satisfied by the arrays

\[
\begin{bmatrix}
1 & 2 & 4 & 5 \\
1 & 2 & 4 & \\
1 & 2 & \\
2 & \\
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 4 & 5 \\
1 & 3 & 5 \\
1 & 3 \\
3 & \\
\end{bmatrix}
\begin{bmatrix}
\end{bmatrix}
\]
In terms of matrices ...
In terms of matrices ...

For an \(m \) by \(n \) matrix \(A = [a_{ij}] \), let

\[
\sigma_{ij}(A) = \sum_{k=1}^{i} \sum_{l=1}^{j} a_{kl} \quad (i = 1, 2, \ldots, m; j = 1, 2, \ldots, n),
\]

the sum of the entries of \(A \) in its leading \(i \) by \(j \) submatrix.
In terms of matrices ...

For an m by n matrix $A = [a_{ij}]$, let

$$\sigma_{ij}(A) = \sum_{k=1}^{i} \sum_{l=1}^{j} a_{kl} \quad (i = 1, 2, \ldots, m; j = 1, 2, \ldots, n),$$

the sum of the entries of A in its leading i by j submatrix.

Let

$$\Sigma(A) = [\sigma_{ij}(A); i = 1, 2, \ldots, m; j = 1, 2, \ldots, n].$$
In terms of matrices ...

For an \(m \) by \(n \) matrix \(A = [a_{ij}] \), let

\[
\sigma_{ij}(A) = \sum_{k=1}^{i} \sum_{l=1}^{j} a_{kl} \quad (i = 1, 2, \ldots, m; j = 1, 2, \ldots, n),
\]

the sum of the entries of \(A \) in its leading \(i \) by \(j \) submatrix.

Let

\[
\Sigma(A) = [\sigma_{ij}(A); i = 1, 2, \ldots, m; j = 1, 2, \ldots, n].
\]

Then for permutation matrices \(P \) and \(Q \) of order \(n \),

\[
P \preceq_B Q \text{ if and only if } \Sigma(P) \geq \Sigma(Q) \text{ (entrywise).}
\]
II. $\mathcal{A}(R, S)$
Definition of $\mathcal{A}(R, S)$
Definition of $\mathcal{A}(R, S)$

Let $R = (r_1, r_2, \ldots, r_m)$ and $S = (s_1, s_2, \ldots, s_n)$ be positive integral vectors. Then $\mathcal{A}(R, S)$ denotes the set of all $(0, 1)$-matrices with row sum vector R and column sum vector S.
Definition of $\mathcal{A}(R, S)$

Let $R = (r_1, r_2, \ldots, r_m)$ and $S = (s_1, s_2, \ldots, s_n)$ be positive integral vectors. Then $\mathcal{A}(R, S)$ denotes the set of all $(0, 1)$-matrices with row sum vector R and column sum vector S.

Example: The matrix

$$A = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{bmatrix}$$

belongs to $\mathcal{A}(R, S)$ where $R = (3, 2, 3, 4)$ and $S = (3, 2, 3, 2, 2)$.
Two important properties of $A(R, S)$
Two important properties of $\mathcal{A}(R, S)$

Existence: Gale-Ryser theorem gives necessary and sufficient conditions for $\mathcal{A}(R, S)$ to be nonempty.
Two important properties of $\mathcal{A}(R, S)$

Existence: Gale-Ryser theorem gives necessary and sufficient conditions for $\mathcal{A}(R, S)$ to be nonempty.

“Connectivity”: Given $A_1, A_2 \in \mathcal{A}(R, S)$, A_1 can be transformed into A_2 by a sequence of interchanges:

$$L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

Each of which replaces a submatrix of A_1 equal to L_2 with I_2, or the other way around.
Two important properties of $\mathcal{A}(R, S)$

Existence: Gale-Ryser theorem gives necessary and sufficient conditions for $\mathcal{A}(R, S)$ to be nonempty.

“Connectivity”: Given $A_1, A_2 \in \mathcal{A}(R, S)$, A_1 can be transformed into A_2 by a sequence of interchanges:

$$L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

each of which replaces a submatrix of A_1 equal to L_2 with I_2, or the other way around.

III. Bruhat orders on $A(R, S)$
Two possibilities
Two possibilities

\[(B) \quad (\text{Bruhat order on } \mathcal{A}(R, S)) \quad A_1 \preceq_B A_2 \quad \text{provided that} \quad \Sigma(A_1) \geq \Sigma(A_2).\]
Bruhat orders on a nonempty $\mathcal{A}(R, S)$

Two possibilities

(B) *(Bruhat order on $\mathcal{A}(R, S)$)* $A_1 \preceq_B A_2$ provided that $\Sigma(A_1) \geq \Sigma(A_2)$.

(\(\hat{B}\)) *(Secondary Bruhat order on $\mathcal{A}(R, S)$)* $A_1 \preceq_{\hat{B}} A_2$ provided that A_1 can be obtained from A_2 by a sequence of $L_2 \rightarrow I_2$ interchanges.
Bruhat orders on a nonempty $\mathcal{A}(R, S)$

Two possibilities

(B) (Bruhat order on $\mathcal{A}(R, S)$) $A_1 \leq_B A_2$ provided that $\Sigma(A_1) \geq \Sigma(A_2)$.

(\(\hat{B}\)) (Secondary Bruhat order on $\mathcal{A}(R, S)$) $A_1 \leq_{\hat{B}} A_2$ provided that A_1 can be obtained from A_2 by a sequence of $L_2 \to I_2$ interchanges.

Note that if A_1 is obtained from A_2 by an $L_2 \to I_2$ interchange, then $\Sigma(A_1) \geq \Sigma(A_2)$, that is the Bruhat order is a refinement of the secondary Bruhat order.
Bruhat orders on a nonempty $\mathcal{A}(R, S)$

Two possibilities

(B) (Bruhat order on $\mathcal{A}(R, S)$) $A_1 \preceq_B A_2$ provided that $\Sigma(A_1) \geq \Sigma(A_2)$.

(\hat{B}) (Secondary Bruhat order on $\mathcal{A}(R, S)$) $A_1 \preceq_{\hat{B}} A_2$ provided that A_1 can be obtained from A_2 by a sequence of $L_2 \rightarrow I_2$ interchanges.

Note that if A_1 is obtained from A_2 by an $L_2 \rightarrow I_2$ interchange, then $\Sigma(A_1) \geq \Sigma(A_2)$, that is the Bruhat order is a refinement of the secondary Bruhat order.

Are these two partial orders the same as they are on permutation matrices? This was implicitly conjectured to be so by RAB and Hwang.
Secondary Bruhat order cover relation
Let \(A = [a_{ij}] \) be a matrix in \(A(R, S) \) where \(A\{i, j\}, \{k, l\} = L_2 \).

Let \(A' = [a'_{ij}] \) be the matrix obtained from \(A \) by the \(L_2 \rightarrow I_2 \) interchange that replaces \(A\{i, j\}, \{k, l\} = L_2 \) with \(I_2 \).
Secondary Bruhat order cover relation

Let $A = [a_{ij}]$ be a matrix in $\mathcal{A}(R, S)$ where $A[\{i, j\}, \{k, l\}] = L_2$. Let $A' = [a'_{ij}]$ be the matrix obtained from A by the $L_2 \rightarrow I_2$ interchange that replaces $A[\{i, j\}, \{k, l\}] = L_2$ with I_2. Then A covers A' in the secondary Bruhat order on $\mathcal{A}(R, S)$ if and only if

(i) $a_{pk} = a_{pl}$, $(i < p < j)$, and $a_{iq} = a_{jq}$, $(k < q < l)$

\[
\begin{bmatrix}
0 & a_{iq} & 1 \\
0 & 1 & a_{jq} \\
1 & a_{iq} & 0 \\
a_{pk} & a_{pl} & 1
\end{bmatrix}
\]

(ii) $a_{pk} = 0$ and $a_{iq} = 0$ imply $a_{pq} = 0$, $(i < p < j, k < q < l)$,

(iii) $a_{pk} = 1$ and $a_{iq} = 1$ imply $a_{pq} = 1$, $(i < p < j, k < q < l)$.

UCONN, March 28, 2007 – p. 15/2
The Conjecture
The Conjecture

First recall: $A_1 \preceq_B A_2$ implies that $A_1 \preceq_B A_2$, that is, the Bruhat order is a refinement of the secondary Bruhat order.
The Conjecture

First recall: \(A_1 \preceq_B A_2 \) implies that \(A_1 \preceq_B A_2 \), that is, the Bruhat order is a refinement of the secondary Bruhat order.

Let \(\mathcal{A}(n, k) \) denote the class of all \((0, 1)\)-matrices with \(k \) 1’s in each row and column. This class is nonempty for all \(0 \leq k \leq n \).
The Conjecture

First recall: $A_1 \leq_B A_2$ implies that $A_1 \leq_B A_2$, that is, the Bruhat order is a refinement of the secondary Bruhat order.

Let $A(n, k)$ denote the class of all $(0, 1)$-matrices with k 1’s in each row and column. This class is nonempty for all $0 \leq k \leq n$.

$A(n, 1)$ is the class of permutation matrices of order n.
The Conjecture

First recall: $A_1 \preceq_B A_2$ implies that $A_1 \preceq_B A_2$, that is, the Bruhat order is a refinement of the secondary Bruhat order.

Let $A(n, k)$ denote the class of all $(0, 1)$-matrices with k 1’s in each row and column. This class is nonempty for all $0 \leq k \leq n$.

$A(n, 1)$ is the class of permutation matrices of order n.

$A(n, 2)$ is the class of $(0, 1)$-matrices of order n that can be written as the sum of two permutation matrices.
Three matrices in $\mathcal{A}(6, 3)$

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix},
C = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix},
\]

\[
D = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}.
\]
And their Σ matrices

$$\Sigma_A = \begin{bmatrix}
1 & 1 & 1 & 1 & 2 & 3 \\
2 & 2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 7 & 8 & 9 \\
3 & 4 & 5 & 8 & 10 & 12 \\
3 & 5 & 7 & 10 & 12 & 15 \\
3 & 6 & 9 & 12 & 15 & 18 \\
\end{bmatrix}, \quad \Sigma_C = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 4 & 5 & 6 \\
2 & 3 & 4 & 7 & 8 & 9 \\
3 & 4 & 5 & 8 & 10 & 12 \\
3 & 5 & 7 & 10 & 13 & 15 \\
3 & 6 & 9 & 12 & 15 & 18 \\
\end{bmatrix},$$

$$\Sigma_D = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 3 \\
1 & 2 & 2 & 4 & 5 & 6 \\
2 & 3 & 4 & 7 & 8 & 9 \\
3 & 4 & 5 & 8 & 10 & 12 \\
3 & 5 & 7 & 10 & 13 & 15 \\
3 & 6 & 9 & 12 & 15 & 18 \\
\end{bmatrix}.$$
And their relationships
And their relationships

Comparing, we have $\Sigma_A > \Sigma_D > \Sigma_C$ (entrywise)
And their relationships

Comparing, we have $\Sigma_A > \Sigma_D > \Sigma_C$ (entrywise)

And so $A \prec_B D \prec_B C$. (Bruhat order)
And their relationships

Comparing, we have $\Sigma_A > \Sigma_D > \Sigma_C$ (entrywise)

And so $A \preccurlyeq_B D \preccurlyeq_B C$. (Bruhat order)

How do A, C, D compare in the secondary Bruhat order?
Comparing, we have $\sum_A > \sum_D > \sum_C$ (entrywise).

And so $A \prec_B D \prec_B C$. (Bruhat order)

How do A, C, D compare in the secondary Bruhat order?

From the cover relation for the secondary Bruhat order on classes $\mathcal{A}(R, S)$, we get that C covers both A and D in the secondary Bruhat order, implying that A and D are incomparable in the secondary Bruhat order.

Thus \preceq_B and $\preceq_{\overline{B}}$ are different on $\mathcal{A}(6, 3)$, and the Bruhat order is a proper refinement of the Bruhat order on $\mathcal{A}(6, 3)$ and on $\mathcal{A}(R, S)$ in general.
Two Theorems
Two Theorems

Theorem: On $A(n, 2)$ the Bruhat order and secondary Bruhat order are identical.
Two Theorems

Theorem: On $\mathcal{A}(n, 2)$ the Bruhat order and secondary Bruhat order are identical.

The class $\mathcal{A}(n, 1)$ (and so the complementary class $\mathcal{A}(n, n - 1)$) contains a unique minimal matrix in the (secondary) Bruhat order. So do the trivial complementary classes $\mathcal{A}(n, 0)$ and $\mathcal{A}(n, n)$ each of cardinality 1.
Two Theorems

Theorem: On $\mathcal{A}(n, 2)$ the Bruhat order and secondary Bruhat order are identical.

The class $\mathcal{A}(n, 1)$ (and so the complementary class $\mathcal{A}(n, n - 1)$) contains a unique minimal matrix in the (secondary) Bruhat order. So do the trivial complementary classes $\mathcal{A}(n, 0)$ and $\mathcal{A}(n, n)$ each of cardinality 1.

Theorem: The only other classes $\mathcal{A}(n, k)$ that contain a unique minimal matrix in the secondary Bruhat order are the classes $\mathcal{A}(2k, k)$; the unique minimal matrix is $J_{k} \oplus J_{k}$.
Algorithm to construct a minimal matrix
Algorithm to construct a minimal matrix

An algorithm to construct a minimal matrix in general classes \(A(\mathbb{R}, \mathbb{S}) \) is given by RAB and Hwang.
Algorithm for $A(n, k)$
Algorithm for $A(n, k)$

1. Let $n = qk + r$ where $0 \leq r < k$.

2. If $r = 0$, then $A = J_k \oplus \cdots \oplus J_k$, ($q$ J_k’s) is a minimal matrix.

3. Else, $r \neq 0$.

 (a) If $q \geq 2$, let

 $$A = X \oplus J_k \oplus \cdots \oplus J_k, \; (q - 1 \; J_k \; \text{'s}, \; X \; \text{has order} \; k + r),$$

 and let $n \leftarrow k + r$.

 (b) Else, $q = 1$, and let

 $$A = \begin{bmatrix} J_{r,k} & O_k \\ X & J_{k,r} \end{bmatrix}, \; (X \; \text{has order} \; k),$$

 and let $n \leftarrow k$ and $k \leftarrow k - r$.

 (c) Proceed recursively with the current values of n and k to determine X.
Constructed minimal matrix for $A(18, 11)$
Constructed minimal matrix for $\mathcal{A}(18, 11)$

$$
\begin{bmatrix}
 J_{7,11} & O_7 \\
 J_{3,4} & O_3 & O_{7,4} \\
 I_4 & J_{4,3} & J_{11,7} \\
 O_{4,7} & J_4
\end{bmatrix}
$$
Constructed minimal matrix for \(A(18, 11)\)

\[
\begin{bmatrix}
 J_{7,11} \\
 J_{3,4} & O_3 \\
 I_4 & J_{4,3} \\
 O_{4,7} & J_4 \\
\end{bmatrix}
\]

The minimal matrices in \(A(n, 2)\) and \(A(n, 3)\) have been characterized, but there does not appear to be a useful characterization of the minimal matrices in \(A(n, k)\) for \(k \geq 4\).
IV. Conclusion/Open Problems
Conclusions
Conclusions

The Bruhat order on permutations extends in general in two ways to a Bruhat order on classes $A(R, S)$.
Conclusions

The Bruhat order on permutations extends in general in two ways to a Bruhat order on classes $\mathcal{A}(R, S)$.

While there are some similarities, the structures on classes $\mathcal{A}(R, S)$, even regular classes $\mathcal{A}(n, k)$, are, not surprisingly, much more complicated.
Conclusions

The Bruhat order on permutations extends in general in two ways to a Bruhat order on classes $\mathcal{A}(R, S)$.

While there are some similarities, the structures on classes $\mathcal{A}(R, S)$, even regular classes $\mathcal{A}(n, k)$, are, not surprisingly, much more complicated.

The Bruhat order on permutations $\mathcal{A}(n, 1)$ is graded, but this is not the case for classes $\mathcal{A}(R, S)$, even classes $\mathcal{A}(n, k)$.
Open problems
Open problems

1. The Bruhat order and secondary Bruhat order do not coincide in general on $A(n, k)$, $k \geq 3$. However, is it true that a matrix A in $A(n, k)$ minimal in the Bruhat order if and only if A contains no submatrix equal to L_2?
Open problems

1. The Bruhat order and secondary Bruhat order do not coincide in general on $A(n, k)$, $k \geq 3$. However, is it true that a matrix A in $A(n, k)$ minimal in the Bruhat order if and only if A contains no submatrix equal to L_2?

2. A characterization of the cover relation of the secondary Bruhat order on classes $A(R, S)$ has been determined. Is there a nice characterization of the cover relation of the Bruhat order on $A(R, S)$?
Open problems

1. The Bruhat order and secondary Bruhat order do not coincide in general on \(\mathcal{A}(n, k), \ k \geq 3 \). However, is it true that a matrix \(A \) in \(\mathcal{A}(n, k) \) minimal in the Bruhat order if and only if \(A \) contains no submatrix equal to \(L_2 \)?

2. A characterization of the cover relation of the secondary Bruhat order on classes \(\mathcal{A}(R, S) \) has been determined. Is there a nice characterization of the cover relation of the Bruhat order on \(\mathcal{A}(R, S) \)?

3. What is the largest size of an antichain in the Bruhat order on classes \(\mathcal{A}(2k, k) \)? More generally, on \(\mathcal{A}(R, S) \)?
1. The Bruhat order and secondary Bruhat order do not coincide in general on \(A(n, k) \), \(k \geq 3 \). However, is it true that a matrix \(A \) in \(A(n, k) \) minimal in the Bruhat order if and only if \(A \) contains no submatrix equal to \(L_2 \)?

2. A characterization of the cover relation of the secondary Bruhat order on classes \(A(R, S) \) has been determined. Is there a nice characterization of the cover relation of the Bruhat order on \(A(R, S) \)?

3. What is the largest size of an antichain in the Bruhat order on classes \(A(2k, k) \)? More generally, on \(A(R, S) \)?

4. The definition of the Bruhat order on \(A(R, S) \) provides an efficient method to check whether \(A_1 \preceq A_2 \) via the matrices \(\Sigma_{A_1} \) and \(\Sigma_{A_2} \). Is there an efficient way to check whether \(A_1 \preceq_B A_2 \)?