LEARNING GOALS: This course has an importance that goes beyond the content. Most students, even some math majors, think of mathematics as learning procedures and practicing them. It's easy for teachers and students to fall into this habit. Instead I want all students to develop the mathematical habits of thought that are necessary for doing and teaching mathematics. Specifically:
You may well initially find the unusual style of this course challenging and even frustrating. By persevering, you will gain mathematical maturity and develop resources that will be useful to you in the future, whatever path your career takes. Don't be shy about seeking help from me, your peers, or other resources if you need it!
CONTENT GOALS:
COORDINATES: Lectures meet Tues/Thur. 4:005:50 (#11978 01) in Science North 321.
TEXTS:
WEB RESOURCES: This course has a blackboard homepage. with three discussion forums that I strongly encourage you to use. Your participation grade will be partly based on the number of useful messages you contribute. Go to blackboard at http://bb3.csuhayward.edu/ For help with blackboard email the ICS Help Desk at helpdesk@csuhayward.edu or call them at (510) 885HELP. The homepage for this course is http://seki.csuhayward.edu/3600.html. It will include a copy of the syllabus and list of homework assignments. I will keep this updated throughout the quarter.
GRADING: Your grade will be based on two exams, homework, participation and a portfolio of your work.
The breakdown of points is:
Midterm  Final  Homework  Participation  Portfolio 

25%  25%  20%  20%  10% 
LEARNING: The only way to learn mathematics is by doing it! Complete each assignment to the best of your ability, and get help when you are confused. Come to class prepared with questions. Don't hesitate to seek help from other students. Sometimes the point of view of someone who has just figured something out can be the most helpful.
DISABILITIES If you have a documented disability and wish to discuss academic accommodations, or if you would need assistance in the event of an emergency, please contact me as soon as possible.
HOMEWORK: Homework will be given for each lecture, and all the homework assigned the previous week will be due the following Thursday. Please attempt all the problems by Tuesday, so that you can ask any questions you may have in class then. Except for routine computations, you should always give reasons to support your work and explain what you're doing. Not all the problems will be graded, but only a subset. Please write your solutions carefully.
The homework is meant to be challenging and somewhat open ended.
You may find yourself spending lots of time working on them and
sometimes getting frustrated. This is natural. I encourage you to work
with other people in person and using blackboard. It's OK to get
significant help from any resource, but in the end, please write your
own solution in your own words.
3600 LECTURE AND ASSIGNMENT SCHEDULE  

Class Date  

Homework  Due 
1/6 T  Overview, Divisibility in Z  A19  1/15 R  
1/8 R  Arithmetic in Mods Lab  Silv. 1,2,4  B19  1/15 R 
1/13 T  Euclid's Algorithm & Z[i]  Silv. 5,6  A10, B1012, C16  1/22 R 
1/15 R  Solving equations in mods  D1,48  1/22 R  
1/20 T  ax+by=c; Magic box; U(n)  Silv. 8, 33  E110  1/29 R 
1/22 R  Powers & Logarithms  Silv. 7, 12  F17  1/29 R 
1/27 T  Primes, FTA  Silv. 13,14  G18  2/10 T 
1/29 R  More on Primes  Silv. 910  H111  2/10 T 
2/3 T  Thms of Fermat & Wilson; CRT  Silv. 11,15  2/12 R  
2/5 R  REVIEW DAY (Attempt Practice Midterm by today)  .  
2/10 TUESDAY: MIDTERM EXAM  
2/12  Tau, Sigma, Phi, perfect numbers  I 19  2/19 R  
2/17  Multiplicative functions  Silv. 16, 19; Burt. 6.1  J  2/26 R 
2/19  Cryptograpy: RSA  Silv. 17,18  K  2/26 R 
2/24  Orders & Generators  Silv. 2021  L16  3/4 R 
2/26  Squares modulo p  Silv. 2223  L712  3/4 R 
3/2  Quadratic Residues  Silv. 24  M16  3/11 R 
3/4  Quadratic Reciprocity  Burton 9.3; Silv. 36  N17  3/11 R 
3/9  Binomial Coeff.. CATCHUP DAY  [Check website]  O ac  3/18 R 
 REVIEW DAY  (Attempt Practice Final by today)  
3/18 THURSDAY: FINAL EXAM 
Here is the Practice Midterm.
Here is the Practice Final.
Here are the Practice Final Solutions.
What are the next two terms of the following sequence: 0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, ,  ?
[From Macalster College's Problem of the Week: A 01 Decision] How many primes are there that, in the usual base 10 notation, begin and end with a "1" and have alternating "0"s and "1"s?
Back to my home page.