Combinatorics

Definition 1 (Combinatorics). Combinatorics is the science of counting.

Theorem 1 (Fundamental Principle of Counting). If a sequence of choices are made and the first choice can be made in n_1 ways, the second in n_2 ways, the third in n_3 ways, and so on, then the entire sequence of choices can be made in $n_1 \cdot n_2 \cdot n_3 \ldots$ ways.

Definition 2 (Permutation). A permutation is a arrangement or list.

Definition 3 (Combination). A combination is a set.

Given a combination, there may be several permutations of the same elements.
Example: The set \(\{a, b, c\} \) yields the following permutations:

- a, b, c
- a, c, b
- b, a, c
- b, c, a
- c, a, b
- c, b, a

We may refer to permutations with or without replacement. In a permutation with replacement, the same element may appear more than once. In a permutation without replacement, no element may appear more than once.

Theorem 2. The number of permutations with replacement of length \(r \) of elements chosen from a set of size \(n \) is \(n^r \).

This theorem is almost obvious from the Fundamental Principle of Counting.
Notation. The number of permutations without replacement of length r of elements chosen from a set of size n is denoted by $P(n, r)$.

Alternate notations which may be found in other sources: $P_{n,r}$, nP_r.

Theorem 3. $P(n, r) = \frac{n!}{(n - r)!}$.

Here, $k!$, read k factorial, means $k(k-1)(k-2)\cdots3\cdot2\cdot1$. In other words, $k!$ is the product of all the positive integers between 1 and k. k must be an integer!
Notation (Combinations). The number of combinations of r elements chosen from a set of size n is denoted by $C(n, r)$.

Alternate notations which may be found in other sources: $C_{n,r}$, $_nC_r$, $\binom{n}{r}$.

We sometimes refer to $C(n, r)$ as n choose r, since it may be thought of as the number of ways of choosing r objects from a set of size n.
Theorem 4. \(C(n, r) = \frac{n!}{r!(n-r)!} \).

Proof. Each combination of \(r \) elements gives rise to \(P(r, r) \) different permutations of the same elements. Thus, the number of permutations of size \(r \) is \(P(r, r) \) times the number of combinations of the same size.

It follows that \(P(n, r) = C(n, r)P(r, r) \). Since \(P(n, r) = \frac{n!}{(n-r)!} \) and \(P(r, r) = \frac{r!}{0!} = r! \), it follows that \(C(n, r) = \frac{n!/(n-r)!}{r!} = \frac{n!}{r!(n-r)!} \).

Example: The number of Gin Rummy hands is \(C(52, 10) = \frac{52!}{10!42!} \).