Math 2141 Homework 2 Solutions

Problem 1. Express the following sets as a single open, closed or half-open interval.

1(a). \([2, 4] \cup (1, 3) = (1, 4]\)
1(b). \([2, 4] \cap (1, 3) = [2, 3]\)
1(c). \(([0, 17] \cap [1, 4]) \cup [4, 7] = [0, 4) \cup [4, 7] = [0, 7]\)
1(d). \(([1, 12] - [-2, 3]) \cup (5, 14] = (3, 12] \cup (5, 14] = (3, 14]\)

Problem 2. For each of the following functions \(f : \mathbb{R} \to \mathbb{R}\), sketch the graph to determine if it is 1-to-1, onto, both or neither. If necessary, restrict the domain and/or codomain of the function so that it is 1-to-1 and onto.

2(a). \(f(x) = e^x\)
2(b). \(f(x) = (x - 3)^2 + 4\)
2(c). \(f(x) = x^3 + 1\)

Solution to 2(a). Looking at the graph

we see that \(f(x) = e^x\) is 1-to-1 but not onto as a function \(f : \mathbb{R} \to \mathbb{R}\). If we restrict the codomain to the interval \((0, \infty)\), then \(f : \mathbb{R} \to (0, \infty)\) is 1-to-1 and onto.

Solution to 2(b). Looking at the graph

we see that \(f(x) = (x - 3)^2 + 4\) is neither 1-to-1 nor onto as a function \(f : \mathbb{R} \to \mathbb{R}\). There are two natural restrictions on the domain to make the function 1-to-1: \((\infty, 3]\) and \([3, \infty)\). For either of these choices for the domain, restricting the codomain to the interval \([4, \infty)\) will make the function onto.
Solution to 2(c). Looking at the graph

we see that \(f(x) = x^3 + 1 \) is both 1-to-1 and onto.

Problem 3. Let \(f(x) = ax + b \) be the equation for a line where \(a \neq 0 \). The two parts of this problem ask you to prove that \(f(x) \) is 1-to-1 in two different ways.

3(a). Prove \(f(x) \) is 1-to-1 using our direct method of proof. That is, assume that \(r_0 \neq r_1 \) and show that \(f(r_0) \neq f(r_1) \). To help you get started, notice that \(f(r_0) = ar_0 + b \) and \(f(r_1) = ar_1 + b \).

3(b). Prove that \(f(x) \) is 1-to-1 by proving the contrapositive. That is, assume that \(f(r_0) = f(r_1) \) and show that \(r_0 = r_1 \).

Solution to 3(a). Let \(f(x) = ax + b \) with \(a \neq 0 \). To use a direct method of proof to show that \(f \) is 1-to-1, we assume that \(r_0 \neq r_1 \) are real numbers. We need to show that \(f(r_0) \neq f(r_1) \).

Starting with \(r_0 \neq r_1 \), we can multiply both sides of the inequality by \(a \) to get \(ar_0 \neq ar_1 \). (Notice that we are using the fact that \(a \neq 0 \) in this step.) Then adding \(b \) to both sides, we get that \(ar_0 + b \neq ar_1 + b \). Since \(f(r_0) = ar_0 + b \) and \(f(r_1) = ar_1 + b \), we have shown that \(f(r_0) \neq f(r_1) \) are required.

Solution to 3(b). To prove the same statement using the proof method of contraposition, we assume that \(f(r_0) = f(r_1) \) and we have to show that \(r_0 = r_1 \).

Since \(f(r_0) = ar_0 + b \) and \(f(r_1) = ar_1 + b \), our assumption that \(f(r_0) = f(r_1) \) means that \(ar_0 + b = ar_1 + b \). Subtracting \(b \) from both sides gives \(ar_0 = ar_1 \). Dividing by \(a \) (which is allowed because \(a \neq 0 \)) gives \(r_0 = r_1 \) which is what we needed to show.

Problem 4. Prove that \(f(x) = 3x + 2 \) is strictly increasing without using calculus.

Solution. We assume that \(r_0 < r_1 \) are real numbers and \(f(x) = 3x + 2 \). We need to show that \(f(r_0) < f(r_1) \).

Starting with \(r_0 < r_1 \), we can multiply both side by 3 to get \(3r_0 < 3r_1 \). Adding 2 to both sides gives \(3r_0 + 2 < 3r_1 + 2 \). Since \(f(r_0) = 3r_0 + 2 \) and \(f(r_1) = 3r_1 + 2 \), this means \(f(r_0) < f(r_1) \) which is what we needed to show.
Problem 5. Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is strictly increasing, then \(f \) is 1-to-1.

Solution. I will give two slightly different ways to write this proof – either one is correct and it is useful for you to see both written versions.

First proof. Assume that \(f \) is strictly increasing and that \(r_0 \neq r_1 \). We show that \(f(r_0) \neq f(r_1) \). Since \(r_0 \neq r_1 \), we know that either \(r_0 < r_1 \) or \(r_1 < r_0 \). We can split our proof into two cases depending on whether \(r_0 < r_1 \) or \(r_1 < r_0 \). For each of the cases, we need to show that \(f(r_0) \neq f(r_1) \).

For the first case, suppose that \(r_0 < r_1 \). Because \(f \) is strictly increasing, this implies that \(f(r_0) < f(r_1) \), and so in particular, \(f(r_0) \neq f(r_1) \) as required.

For the second case, suppose that \(r_1 < r_0 \). Again, since \(f \) is strictly increasing, this implies that \(f(r_1) < f(r_0) \), and so in particular, \(f(r_0) \neq f(r_1) \).

Second proof. This proof is essentially the same as the first proof, but is written in a more concise manner. Assume that \(f \) is strictly increasing and we are given two different real numbers \(r_0 \) and \(r_1 \). We need to show that \(f(r_0) \neq f(r_1) \).

Since \(r_0 \) and \(r_1 \) are unequal, one must be less than the other. We can assume that we have labeled these numbers so that \(r_0 < r_1 \). Because \(f \) is strictly increasing, we have that \(f(r_0) < f(r_1) \), so in particular, \(f(r_0) \neq f(r_1) \) which is what we needed to show.

Problem 6. Let \(f(x) = ax + b \) be the equation of line with \(a > 0 \).

6(a). Prove that \(f(x) \) is strictly increasing without calculus. (Hint: Think about Problem 4)

6(b). Use Problems 5 and 6(a) to explain why \(f(x) \) is 1-to-1.

Solution to 6(a). Assume that \(r_0 < r_1 \). We need to show that \(f(r_0) < f(r_1) \). Because \(a > 0 \), we can multiply both sides of the inequality \(r_0 < r_1 \) by \(a \) without changing the direction of the inequality. Therefore, \(ar_0 < ar_1 \). Adding \(b \) to both sides gives \(ar_0 + b < ar_1 + b \). Since \(f(r_0) = ar_0 + b \) and \(f(r_1) = ar_1 + b \), we have that \(f(r_0) < f(r_1) \) as required.

Solution to 6(b). By Problem 6(a), \(f \) is strictly increasing which means (by Problem 5) that \(f \) is 1-to-1.

Problem 7. Prove that if \(k \) is a prime number, then \(\sqrt{k} \) is irrational.

Solution. We do this proof by contradiction. Assume that \(\sqrt{k} \) is rational. We write \(\sqrt{k} = p/q \) (with \(p, q \in \mathbb{N} \)) as a reduced fraction so that \(p \) and \(q \) do not have any common divisors.

Squaring both sides of \(\sqrt{k} = p/q \) gives \(k = p^2/q^2 \) which means \(kq^2 = p^2 \). Since \(k \) divides \(kq^2 \), \(k \) must also divide \(p^2 \). However, since \(k \) is prime, this means \(k \) divides \(p \) so we can write \(p = kn \) for some \(n \in \mathbb{N} \).

Plugging \(p = kn \) into \(kq^2 = p^2 \) gives \(kq^2 = k^2 n^2 \) which means \(q^2 = kn^2 \). Since \(k \) divides \(kn^2 \), \(k \) must divide \(q^2 \). Since \(k \) is prime, this means \(k \) divides \(q \). We have now shown that \(k \) divides both \(p \) and \(q \), which contradicts the fact that \(p \) and \(q \) have no common divisors.