Final Exam Preparation

1. Let $V = \mathbb{F}^n$ and let $B = (v_1, v_2, \ldots, v_n)$ be an orthonormal basis of V. Let $S_i : V \to V$ be the map that sends a vector $v = a_1 v_1 + \cdots + a_n v_n$ to $S_i(v) = v - 2a_i v_i$.

 (a) Show that S_i is linear.
 (b) Show that S_i is an isometry.

2. Let $T_C : \mathbb{C} \to \mathbb{C}$ be the map given by complex conjugation, that is, $T_C(a + ib) = T_C(a - ib)$, and let $T_R : \mathbb{R}^2 \to \mathbb{R}^2$ be the map $T_R(a, b) = (a, -b)$.

 (a) Show that T_C is not a linear map.
 (b) Show that T_R is a linear map.
 (c) Show that T_R is an isometry but not positive.

3. Let \mathcal{S} be the set of all self-adjoint operators on a vector space V.

 (a) Prove that \mathcal{S} is a subspace of $\mathcal{L}(V)$ if $\mathbb{F} = \mathbb{R}$.
 (b) Prove that \mathcal{S} is not a subspace of $\mathcal{L}(V)$ if $\mathbb{F} = \mathbb{C}$.

4. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be the reflection at the line $\{(x, x) \mid x \in \mathbb{R}\}$.

 (a) Find the matrix of T with respect to the standard basis.
 (b) Find all eigenvalues of T.

5. Let V be a complex vector space and let $T \in \mathcal{L}(V)$ be normal and such that T has only one distinct eigenvalue λ. Show that $Tv = \lambda v$ for all $v \in V$.

6. Let V be real vector space and let $T \in \mathcal{L}(V)$ be an isometry. Prove that $\lambda = 0$ can not be an eigenvalue of T.

7. (a) State the spectral theorem.
 (b) When is an operator said to be positive. Give a precise definition.
 (c) Give an example of a positive operator on \mathbb{R}^2 that is not the identity.
 (d) Does every complex positive operator have a diagonal matrix with respect to some orthonormal basis? Explain why or why not.

8. Let T be a self-adjoint operator. Show that $\text{Null} T = (\text{Range} T)^\perp$.

MATH 3210Q Linear Algebra Spring 2009