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1 Introduction

This is joint work with Robert Bédard. We will describe a formula for the
multiplication of a root vector and an arbitrary element of a PBW-basis in the
quantized enveloping algebra of type A. The initial motivation for this problem
was the study of rational smoothness of the closure of orbits of representations of
quivers, and there are interesting applications of the formula in this context, cf. [BS]
and [S]. The author thanks the referee for helpful comments on the presentation.

Let F be an algebraically closed field of characteristic > 0. Let v be an inde-
terminate and U be the Drinfeld-Jimbo quantized enveloping algebra over Q(v) of
type An. Let U+ be the positive part of U. U+ is a Q(v)-algebra with generators:
E1, . . . , En and relations:

{

E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0, if |i− j| = 1

EiEj −EjEi = 0, if |i− j| > 1.

Let (¯) : U+ →U+ be the Q-algebra involution defined by Ei = Ei, and v = v−1.
Let R, (R+) be the set of (positive) roots of a root system of type An. Denote

by α1, . . . , αn the simple roots, then we have R+ = {(αa + αa+1 + . . . + αb) | 1 ≤
a ≤ b ≤ n}. Let ν be the number of positive roots, ν = n(n + 1)/2. Any α ∈ R
defines a reflection sα in the Weyl group. We will write si instead of sαi

. Let w0

be the longest element in the Weyl group.
Given integers M, N ≥ 0, we define

[N ]! =

N
∏

h=1

(vh − v−h)

(v − v−1)
,

[

M + N

N

]

=
[M + N ]!

[M ]![N ]!
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and E
(N)
i =

EN
i

[N ]!
for 1 ≤ i ≤ n.

In [L90] Lusztig has defined a Q(v)-algebra automorphism T̃i : U→U, which
gives a braid group action on U, and used it to give bases of PBW type of U+. We
have

T̃i(Ej) = Ej if |i− j| > 1

T̃i(Ej) = (EjEi − v−1EiEj) if |i− j| = 1

and T̃iT̃j T̃i = T̃j T̃iT̃j if |i − j| = 1 and T̃iT̃j = T̃j T̃i if |i − j| > 1. Moreover

T̃i(Ej) = T̃−1
j (Ei) whenever |i− j| = 1.

Let Q be a quiver of type An. Fix a reduced expression i = (i1, i2, . . . , iν) of
w0, which is adapted to the quiver Q. That is, i1 is a sink of Q and for k > 1, ik is
a sink of the quiver sik−1sik−2 . . . si1(Q), where sj(Q) is the quiver obtained fromQ
by reversing the orientation of all the arrows ending at j. The choice of i gives rise
to a total ordering of positive roots α1, α2, . . . , αν where αk = si1si2 · · · sik−1 (αik

)
for k = 1, . . . , ν. Define

Ec
i = E

(c1)
i1

T̃i1

(

E
(c2)
i2

)

T̃i1 T̃i2

(

E
(c3)
i3

)

. . . T̃i1 T̃i2 · · · T̃i(ν−1)

(

E
(cν)
iν

)

.

For r ∈ {1, 2, . . . , ν}, let b(r) ∈ Nν be the vector whose r-th coordinate is 1 and

all other coordinates are 0. Then Ec
i =

∏ν

r=1

(

E
cr b(r)
i

)

=
∏ν

r=1
1

[cr ]!

(

E
b(r)
i

)cr

.

Theorem 1.1 [L90] The set Bi = {Ec
i | c ∈Nν} is a Q(v)-basis of U+.

Bi is said to be a basis of PBW type. The elements of Bi of the form E
b(r)
i are

called root vectors.

Example 1.2 Let Q be the quiver 1 → 2 ← 3, and i = (2, 1, 3, 2, 1,3). Note
that i is adapted to Q. Then the positive roots with corresponding root vectors are
as follows:

α1 = α2 E
b(1)
i = E2

α2 = α1 + α2 E
b(2)
i = E1E2 − v−1E2E1

α3 = α2 + α3 E
b(3)
i = E3E2 − v−1E2E3

α4 = α1 + α2 + α3 E
b(4)
i = E1E3E2 − v−1E1E2E3

−v−1E3E2E1 + v−2E2E1E3

α5 = α3 E
b(5)
i = E3

α6 = α1 E
b(6)
i = E1.

Let d = (d1, . . . , dn) ∈ Nn and Ed =
⊕

i→j∈Q1 Hom (F di , F dj ). Ed is the
space of representations of the quiver Q of dimension d. By Gabriel’s theorem, the
indecomposable representations of Q are in 1:1 correspondence with the positive
roots. Denote by eα the indecomposable representation corresponding to the root α.
Then any element of Ed is isomorphic to

⊕ν
r=1 cr eαr for some c = (c1, . . . , cν) ∈

Nν . Since we have a fixed order on positive roots, we may denote this representation
by e(c).

2 α-partitions

In this section we describe the notion of α-partitions, for exact definitions see
[BS]. Recall that in the Auslander-Reiten quiver ΓQ associated to the quiver Q,
the vertices are the indecomposable representations of Q. Thus each vertex of ΓQ
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Figure 1 The Auslander-Reiten quiver of 1 ← 2 ← 3→ 4 ← 5 → 6 with an

α21-partition (shaded)

is corresponding to a unique positive root, by Gabriel’s theorem. Let τ be the
Auslander-Reiten translation.

Let λ be a partition and consider its Young diagram, e.g. λ = . Place the

lower left box of λ at the vertex corresponding to α in the Auslander-Reiten quiver,
and perform a rotation of 3π/4 around α. Figure 1 shows an example of type
A6. Then λ is called α-partition if each box of λ corresponds to a non-projective
indecomposable representation. Recall that in ΓQ the projective representations
are the n vertices that do not have a translate to the left.

The weight π
λ = (πλ

1 , . . . , πλ
ν ) of λ is the following element of {−1, 0, +1}ν.

Let s ∈ {1, . . . , ν}. If s is such that one obtains a new partition by adding a box
to λ at the position of αs in ΓQ, then let πλ

s = +1. In figure 1, these positions are
marked by a +. If τ−1(αs) lies in λ and there is no arrow in ΓQ starting at αs and
ending at a vertex lying in λ, then let πλ

s = −1. In figure 1, these positions are
marked by a −.

Otherwise, let πλ
s = 0. Note that the positions where πλ

s 6= 0 lie on a zigzag
in the Auslander-Reiten quiver and the +1’s correspond to the right corners of the
zigzag and the −1’s correspond to the left corners.

3 Multiplication by a Root Vector

The following theorem is proved in [BS]. We will not prove it here, we do not
even give a precise statement of it, but we will explain it visually in an example.
For exact definitions and details, the reader is referred to the original paper.

Theorem 3.1 For all r ∈ {1, . . . , ν}, c ∈ Nν

E
b(r)
i Ec

i =
∑

λ∈Λ(r,c)

P (λ, c) Ec+π
λ

i

with

P (λ, c) =
vϕ(c,πλ)

(1− v−2)

∏

t∈π
λ
+

(1 − v−2(ct+1))
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Table 1 List of all α21-partitions

∅

Λ(r, c) = set of αr-partitions λ such that c + π
λ ∈Nν

π
λ = (πλ

1 , . . . , πλ
ν ) ∈ {−1, 0, 1}ν

π
λ
+ = {t | πλ

t = 1}
ϕ(c, πλ) = dim Hom(e(c), e(πλ))− dim Ext (e(πλ), e(c))

Where we use the notation dim Hom(e(c), e(πλ)) =
∑

t πλ
t dim Hom(e(c), e(b(t)))

and dim Ext (e(c), e(πλ)) =
∑

t πλ
t dim Ext (e(c), e(b(t)))

We illustrate this theorem in figure 2, in the situation of the example already
seen in figure 1. Let r = 21. We label the vertices αs, s = 1, . . . , ν, of the
Auslander-Reiten quiver simply by s. In this example an α21-partition has to be
of a shape that fits into a 3× 4 rectangle, the rectangle S(r) having corners 5, 7, 19
and 21. S(r) is the set of all vertices s in ΓQ such that dimHom (eαs, eαr) = 1.
Note that the shape of S(r) is not always a complete rectangle, e.g. in figure 2,
S(5) = {1, 2, 4, 5}. Vertex number 5 is the only vertex in S(21) corresponding to a

projective module, thus the number of α21-partitions is
(

3+4
3

)

− 1 = 34 (see table

1). Let us calculate P (λ, c) for the partition chosen in figure 2. ϕ(c, πλ) has a nice
description in the figure: dim Hom (e(c), e(πλ)) is the sum of all ct such that t lies
in S(r) but do not inside the partition λ; and dim Ext (e(πλ), e(c)) is the sum of
all cτ(t) of these ct. That is

ϕ(c, πλ) =
∑

t∈S(r)\λ

ct − cτ(t)

and in our example

ϕ(c, πλ) = c5 + c6 + c10 + c15 + c19 − c2 − c4 − c9 − c14.

We already saw in figure 1 that π
λ
+ = {6, 19}, thus

P (λ, c) =
vc5+c6+c10+c15+c19

vc2+c4+c9+c14

(1 − v−2(c6+1))(1− v−2(c19+1))

(1 − v−2)
.

Remark 3.2 The first step in the proof of the theorem is the calculation of the
commutation relations between root vectors. In this step we use Ringel’s isomor-
phism between the twisted Ringel-Hall algebra of representations of the quiver and
the plus part of the quantized enveloping algebra [Rin93],[Gre95]. The second step
is then to proof the formula by recursion. This is done by a purely combinatorial
argument using the Auslander-Reiten quiver.

We do not know how to generalize this result to other quivers. For quivers of
type Dn the first step is known (at least in the Ringel-Hall algebra) [Gu00], but even
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Figure 2 Computation of P (λ, c). The ordering of positive roots corresponds

to the reduced expression i = (1,2,1, 4,3,2, 1,6,5, 4,3,2, 1,6,5, 4,3,2, 6,5,4)

in this case we have not found a combinatorial way to describe the multiplication
by a root vector.
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