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About Me 


I am an Associate Professor in the Mathematics Department at the
University of Connecticut. In the past I have been an H.C. Wang
Postdoc at Cornell University, a Lecturer in the Department of
Mathematics at the State University of New York at Stony Brook, and a
graduate student at Yale University. My mathematical interests
include analysis on fractals, Sobolev spaces and quasiconformal
mappings These have connections to harmonic analysis, potential
theory, complex analysis and geometric measure theory. In addition to
my academic work I am an avid rock-climber, occasional cyclist and
hiker, and all-around outdoor enthusiast.
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My research interests are mostly related to analysis on spaces
which lack smoothness properties. These spaces include Euclidean
domains (and pieces of manifolds) which have highly irregular
boundaries as well as spaces for which the intrinsic structure is
very non-Euclidean.

There are several approaches to analysis
to metric-measure spaces that do not have a Euclidean structure. 
In order to get started one usually makes some assumptions that
provide a large class of "well-behaved" functions. 
Most of the work I have done recently is in what is usually called
"Analysis on Fractals", though parts of it should perhaps
more accurately be called "Analysis on Metric-Measure-Dirichlet
spaces"or "Analysis on self-similar spaces".  In
this approach one either constructs or assumes the existence of a
Dirichlet form, which one should think of as being an abstract
version of the L^2 norm of the Euclidean gradient, and therefore (by
general considerations) a Laplacian operator.  The "well-behaved
functions" one considers are those in the domain of the
Dirichlet form (finite energy functions - a sort of Sobolev space),
or in the domain of the Laplacian ("differentiable functions")
or some power of the Laplacian ("smooth of some finite order"). 
One can then try to build a theory that parallels the usual calculus
in Euclidean spaces for this class of functions and operators, as
well as studying the associated differential and partial differential
equations.  Eventually one would like to be able to analyze the
behavior of solutions on spaces that approximate structures which
occur in nature.  To give just one example, one could ask what
solutions of the wave equation look like on a percolation network
(such as a distribution of oil or gas in a rock formation); I
emphasize that we are a long way from being able to give a good
answer to this question!

This type of analysis involves a
blend of harmonic analysis, potential theory, functional analysis and
probability theory.  To get started one needs the Dirichlet
form.  In the cases where the resulting potential theory will
give point sets positive capacity (and therefore finite energy
functions will be continuous) the form can be constructed as a limit
of forms on graphs, which often gives a concrete way to compute with
interesting functions.  This approach is especially useful on
self-similar sets because self-similarity gives a relationship
between the local and global analytic structures which is a little
like that in Euclidean spaces (which are about as self-similar as it
is possible to be!).  There are quite a lot of analytic results
where some sort of self-similarity plays an important role, and
several of my papers are on results of this type.  Once one
leaves the self-similar setting many things become more difficult. 
There are some things that can be done by purely functional analytic
methods if one knows strong estimates for the heat kernel associated
to the Dirichlet form (for example my paper with Strichartz and
Teplyaev on Smooth Bumps contains a result of this type) but
constructing Dirichlet forms and giving explicit descriptions of
finite energy functions is much more difficult.

There are a
lot of interesting problems in this area, so I will not try to
mention all of them.  Among the things I am thinking about are
geometric structures on metric-measure-Dirichlet spaces (in
particular Riemannian structures associated to the form, as in my
paper with Ionescu and Teplyaev on Derivations and Dirichlet forms)
and the associated question of developing non-commutative geometries
and eventually quantum field theories on self-similar spaces.  I
am looking at several open problems about smooth functions and their
properties on self-similar sets with resistance-type Dirichlet forms
(and on their product spaces and on fractafolds constructed
therefrom).  At the same time I am investigating the behavior of
the metric in harmonic coordinates, existence of embeddings via
eigenfunction coordinates (which is related to some questions in
applied mathematics) and the nature of the maps between the
resistance metric and harmonic coordinate metric (when it exists). 
The overall goal here is to understand the extent to which analysis
of this type is similar to the study of Sturm-Liouville problems
associated to singular measures.  Finally I am working on some
methods for the construction of Dirichlet forms on sets which do not
fit within the existing theory.

For completeness, I should
return to a point mentioned earlier, which is that there are other
approaches to analysis on metric measure spaces. One important and
well known one is introduced in the book "Analysis on metric
spaces" by Juha Heinonen.  In this approach one assumes
existence of a large class of rectifiable curves, from which it
follows that the Lipschitz functions are a rich and interesting
collection.  Pursuing this idea leads to a sort of first order
calculus on the space. In general this is a different kind of theory
than that in analysis on fractals, where there are often no
rectifiable curves and the Lipschitz functions are not the natural
class to consider.  However there are some results in the
intersection between these two theories, and I believe that many more
natural connections will become clear over time. I have not worked in
this area recently, but my thesis work on Sobolev extension theorems
is closely connected to it.

Some results

Sobolev Spaces and other spaces of "smooth"
functions

My thesis work was about universal extension operators for Sobolev
spaces, which are operators that extend functions from any Sobolev
space on a domain (locally they are defined on any function that is
locally integrable) to the corresponding Sobolev space on the ambient
Euclidean space, with estimates. The main result of my thesis
extended methods of E. Stein and P.W. Jones to show that a universal
extension operator exists for Sobolev spaces on locally-uniform
domains. If you are familiar with the "cone-condition" for
boundary points of a domain, which is often assumed when studying
boundary value problems, then you can think of locally uniform
domains as a generalization in which there is a "twisting cone"
at every boundary point. The basic example of a twisting cone is the
region between two logarithmic spirals. 


	My
	thesis (long) 
	

	
	The published version appeared in the Journal
	of Functional Analysis (Subscription required). 
	




Subsequently I have generalized the results of my thesis to
consider Sobolev spaces on domains satisfying a weaker condition that
is more measure-theoretic than geometric (unpublished). The condition
is usually called Ahlfors (or Ahlfors-David) regularity. It says that
if we take a ball of radius r (for r between 0 and 1) around any
point in the domain, then the intersection of the ball and the domain
has measure at least Cr^n. This condition has been shown to be
necessary for the existence of a bounded linear extension operator by
Hajlasz, Koskela and Tuominen. An earlier result of Rychkov shows
that this is sufficient for the construction of Sobolev extensions of
fixed order.

Analysis on fractals

Much of my work in this area is joint with Bob Strichartz
(Cornell), and different projects have involved a number of other
people, especially Kasso Okoudjou (University of Maryland), Erin
Pearse (Cal Poly), Huojun Ruan ( Zhejiang U.), Alexander Teplyaev (U.
of Connecticut) and Marius Ionescu (U.S. Naval Acad.).

One problem we have addressed is related to the structure of
smooth functions on certain fractal sets. This structure is very
different to that of smooth functions on Euclidean spaces, not least
because on fractals the product of smooth functions is almost never
smooth! What we have been doing is constructing analogues of some
tools of classical analysis (including smooth bump functions,
partitions subordinate to open covers, distributions, etc.) in the
fractal setting. These should be useful for studying differential
equations on fractal structures.  So far we have quite complete
results for the existence of smooth bump functions on metric measure
spaces, and have a solution to the smooth partitioning problem in the
post-critically finite (p.c.f.) case. This lets us define
distributions on p.c.f. fractals and establish their basic
properties,as well as study pseudo-differential operators of various
kinds. The tools involved in the proofs are both analytic and
probabilistic.

	Generalized
	eigenfunctions and a Borel theorem on the Sierpinski Gasket.
	(with Robert S. Strichartz and Kasso A. Okoudjou). Canad. Math.
	Bull. 52 (2009), no. 1, 105-116. 
	

	
	Smooth
	bumps, a Borel theorem and partitions of smooth functions on p.c.f.
	fractals. (with Robert S. Strichartz and Alexander Teplyaev).
	Trans. Amer. Math. Soc. 361 (2009), no. 4, 1765-1790. 
	

	
	Distributions
	on p.c.f. fractafolds (with Robert S. Strichartz). J. Anal.
	Math. 112 (2010), 137-191. 
	

	
	Pseudodifferential
	operators on fractals and other metric-measure spaces. (with
	Marius V. Ionescu and Robert S. Strichartz). Rev.
	Mat. Iberoam. 29 (2013), no. 4, 1159-1190.

	
	Complex powers of the
	Laplacian on affine-nested fractals as Calderon-Zygmund operators.
	(with Marius V. Ionescu).
	Commun.
	Pure Appl. Anal. 13
	(2014), no. 6, 2155-2175




A related paper I wrote with Coulhon uses the failure of
multiplication to preserve smoothness in the fractal setting to give
examples where Sobolev spaces are not algebras.  The methods build on
an approach of Ben-Gal, Strichartz and Teplyaev, which in turn is
related to older work of Kusuoka on the singularity of energy
measures (and hence the natural candidates for gradients) to the
usual self-similar reference measure on a fractal.

	Sobolev
	algebra counterexamples. (with Thierry Coulhon). J. Fractal. Geom.
	(To appear.)




A very useful property of the Kigami Laplacian on a suitable
self-similar set is that one can give a concrete description of the
Green kernel.  A group of us found an analogous constructive approach
to the resolvent kernel for the Laplacian on p.c.f. self-similar
sets. We were able to give a series description of this kernel in
which the terms are rescaled and localized copies of functions that
satisfy an eigenfunction equation on the interior of the fractal.
This work is related to earlier results I obtained with
(undergraduate student) Jessie DeGrado and with Bob Strichartz, which
allow the computation of the harmonic gradients introduced by
Teplyaev in the case of the Sierpinski Gasket.  I subsequently
proved some estimates which allow this approach to be applied to
infinite blowups of these fractals and which generalize known bounds
for the resolvent to the complex plane with the negative real axis
removed.

	The
	resolvent kernel for the Laplacian on pcfss fractals (with
	Marius Ionescu, Erin Pearse, Huojun Ruan, Robert S. Strichartz).
	Trans. Amer. Math. Soc. 362 (2010), no. 8, 4451-4479. 
	

	
	Harmonic
	Gradients on the Sierpinski Gasket (with Jessica DeGrado and
	Robert S. Strichartz). Proc. Amer. Math. Soc. 137 (2009), no. 2,
	531-540. 
	

	
	Estimates for the
	resolvent kernel of the Laplacian on p.c.f. self-similar fractals
	and blowups. Trans. Amer. Math. Soc.
	364
	(2012) 1633-1685.








A separate set of projects I have
worked on is related to describing certain quantum particle models on
fractal substrates.  The foundation for this work is a functional
analytic approach to constructing differential one-forms on fractals
that admit a resistance form in the sense of Kigami.  This was
inspired by work of Sauvageot and Cipriani on derivations and
Dirichlet forms; what we add to their approach in the following paper
is a concrete description of these structures in the case of
resistance forms.





	Derivations and Dirichlet
	forms on fractals. (with Marius V. Ionescu and Alexander
	Teplyaev). J. Funct. Anal.  263 (2012) no. 8, 2141-2169.




Hinz and Teplyaev used some of these ideas in as sequence of
papers treating vector fields and  Schrodinger equations for
Dirichlet forms on metric measure spaces in the case where the energy
measures are absolutely continuous with respect to the reference
measure.  Hinz and I then generalized some features of this to the
case of resistance forms under mild conditions which permit them to
be applied to the case of magnetic Schrodinger operators on certain
specific fractals. Magnetic operators on some fractals of this type
were previously studied in the physics literature, in particular by
Bellissard and collaborators, using renormalization-group methods.
Two of my papers have graduate and undergraduate co-authors from my
REU.

	Magnetic fields on resistance spaces. (with Michael Hinz). J.
	Fractal Geom. 3 (2016) no. 1, 75-93.

	
	Magnetic
	Laplacians of locally exact forms on the Sierpinski Gasket. (With
	Jessica Hyde, Daniel J. Kelleher, Jesse Moeller, Luke G. Rogers,
	Luis Seda.)  Commun. Pure Appl. Anal. 16 (2017) no. 6, 2299-2319.








	Spectra
	of Magnetic Operators on the Diamond Lattice Fractal. (With Antoni
	Brzoska, Aubrey Coffey, Madeline Hansalik, Stephen Loew.)









An
interesting feature of analysis on the Sierpinski gasket, which is
one of the best-studied examples in analysis on fractals, is that
Laplacian eigenfunctions are precisely localized. This a common
phenomenon on highly symmetric fractals (as was proven by Barlow and
Kigami) and has many interesting consequences. For example, there is
an elegant symmetry-breaking argument of Teplyaev that proves the
Laplacian on an infinite blowup of the Sierpinski gasket has
pure-point spectrum.  We make substantial use of the localization of
Laplacian eigenfunctions to prove versions of the classical Szego
theorem on the Sierpinski Gasket.  This is a very different approach
than that used in the classical setting, and although our methods
should apply with suitable modifications to many highly symmetrical
fractals with resistance form we do not know how to prove analogous
results outside this class.

	Szego
	limit theorems on the Sierpinski Gasket. (with Kasso A. Okoudjou
	and Robert S. Strichartz). J. Fourier Anal. Appl. 16 (2010), no. 3,
	434-447. 
	

	
	Some
	spectral properties of pseudo-differential operators on the
	Sierpinski Gasket. (With Marius Ionescu and Kasso Okoudjou.)  Proc.
	Amer. Math. Soc. 145 (2017), no. 5, 2183—2198.












A
well-known class of fractals are the Julia sets obtained from the
dynamics of quadratic polynomials on the complex plane.  Despite the
simplicity of their construction they contain a wealth of interesting
mathematics.  It is then natural to wonder whether they support a
non-trivial intrinsic differential structure.  One approach to
obtaining such a structure in the case of quasicircles has been
proposed by Connes as an application of methods from his theory of
non-commutative geometry.  Methods from analysis on fractals are
applicable to more complicated Julia sets, but the results are not
directly comparable to those of Connes.  For example, in the paper
below, Teplyaev and I show how to construct a Laplacian in the Kigami
sense on the Basilica Julia set.  Significant progress on wider
classes of Julia sets has been made by Strichartz and collaborators
by viewing them as quotients of the circle in a manner that respects
the dynamics; this  approach uses celebrated results of Douady and
Hubbard.  Recently, Brzoska has made progress on some related
questions for the Schreier graphs of the Basilica group.





	Laplacians
	on the basilica Julia sets. (with Alexander Teplyaev). Commun.
	Pure Appl. Anal. 9 (2010), no. 1, 211-231. 
	












As part of my REU I have written some papers with students which
are not part of the above circles of ideas but which are in the area
of analysis on fractals.

	Power
	dissipation in fractal AC circuits. (With Loren Anderson, Ulysses
	Andrews, Antoni Brzoska, Joe P. Chen, Aubrey Coey, Hannah Davis,
	Lee Fisher, Madeline Hansalik, Stephen Loew, Alexander Teplyaev. )
	Journal of Physics A: Mathematical and Theoretical. 50 (2017), no.
	32, 325205.

	
	Measurable
	Riemannian structure on higher dimensional harmonic Sierpinski
	gaskets. (With Sara Chari, Joshua Frisch, Daniel J. Kelleher.)









Modulation Spaces, multipliers and PDE

Modulation spaces are spaces of functions with a some phase space
localization measured by the modulation norm. As such they are well
adapted to studying the evolution of the phase space structure of
solutions of partial differential equations. It is well known that
L^2 quantities can be used to describe energies, and many well-known
PDE (eg the wave equation) have a conservation of energy property
expressible in these terms. On the other hand, L^p properties for p
different than 2 are not usually conserved. Instead one may wish to
look at phase-space localization as expressed using the modulation
space norm. The results for unimodular multipliers (including those
for the wave and Schroedinger equations) are in a paper I
collaborated on with Arpad Benyi, Kasso Okoudjou and Karlheinz
Grochenig. 


	Unimodular
	Multipliers on Modulation Spaces (with Arpad Benyi, Kasso
	Okoudjou and Karlheniz Grochenig). J. Funct. Anal.
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Current courses 


This semester I am teaching Math
3435: Partial Differential Equations.

Past courses 


At the University
of Connecticut

	Spring 17. Math
	2144: Advanced Calculus IV.

	
	Fall 16. Math
	2143: Advanced Calculus III.

	
	Fall 16. Math
	5110: Introduction to Modern Analysis

	
	Spring 16. Math
	3151: Analysis 2

	
	Spring 15.  5010. Analysis on
	Fractals. (Topics course for graduate students.)

	
	Spring 15. 5111:
	Measure and Integration

	
	Fall 14. Math
	5140: Fourier Analysis

	
	Fall 14. Math
	2110: Multivariable Calculus

	
	Spring 13. Math
	3150: Analysis 1

	
	Fall 12. Math
	2210: Linear Algebra.

	
	Fall 12. Math
	3160: Probability Theory.

	
	Spring 12. Math
	5120; Complex Function Theory.

	
	Fall 11. Math 3094: Analysis on
	Fractals. (Undergraduate seminar.)

	
	Fall 11.  Math
	5110: Introduction to Modern Analysis

	
	Spring 11. Math
	2144: Advanced Calculus IV. 
	

	
	Fall 10. Math
	5140: Fourier Analysis.  Graduate course. 
	

	
	Fall 10. Math
	2143: Advanced Calculus III. 
	

	
	Spring 10. Math
	2142: Advanced Calculus II. 
	

	
	Fall 09. Math
	2360: Geometry. 
	

	
	Fall 09. Math
	2141: Advanced Calculus I. 
	

	
	Spring 09. Math
	5120: Complex Function Theory I. Graduate course. 
	

	
	Fall 08. Math
	2110: Multivariable Calculus. 
	

	
	Fall 08. Math
	3150:Analysis I. 
	

	
	Spring 08. Math
	355: Functional Analysis II. Graduate course 
	

	
	Fall 07. Math
	354: Functional Analysis I. Graduate course 
	

	
	Fall 07. Math
	211: Elementary Differential Equations. 
	




At Cornell
University 


	Spring 07. Math 424, Fourier
	Analysis and Wavelets. An undergraduate course for math, sciences
	and engineering students. 
	

	
	Fall 06. Math 413, Honors
	Introduction to Analysis. Honors version of the introductory real
	analysis course. 
	

	
	Fall 06. Math 103: Math
	Explorations. Mathematical thinking for real life problems, aimed at
	students who do not intend to continue in mathematics. 
	

	
	Spring 06. Math 712 Planar
	harmonic measure. An advanced graduate course. 
	

	
	Fall 05. Math 621: Measure and
	Integration. An introduction for graduate students. 
	

	
	Fall 05. Math 311: Introduction to
	Analysis. Basics of real analysis, aimed at undergraduate majors and
	minors. 
	

	
	Spring 05. Math 311: Introduction
	to Analysis. Basics of real analysis, aimed at undergraduate majors
	and minors. 
	

	
	Fall 04: Math 191: Calculus for Engineers. (Two Sections)
	Single variable calculus for engineering freshmen. 
	




At Stony
Brook University 


	Mat 342: Applied Complex Analysis.
	Introduction to complex analysis with some applications (eg to
	physics). 
	

	
	Mat 125: Calculus A. Single variable differential calculus. 
	




At Yale
University 


Over several semesters I taught the entire calculus sequence at
Yale, some courses more than once. 


	Math 112: Differential Calculus of
	one variable. 
	

	
	Math 115: Integral Calculus of one
	variable. 
	

	
	Math 120: Calculus of several variables. 
	









Other People

	Other people's work I am
	interested in  (out of date)




