1. Solve the following differential equations.
 (a) \(y' + xy = x^3 \), with \(y(0) = 0 \).
 (b) \(xy' - 2y = x^5 \), with \(y(1) = 1 \).
 (c) \(y' \sin x + y \cos x = 1 \), where \(x \in (0, \pi) \).

2. Solve the following differential equations.
 (a) \(y'' + 2y' - 3y = 0 \).
 (b) \(y'' - 4y' + 4y = 0 \), with \(y(1) = 2 \) and \(y'(1) = -1 \).
 (c) \(y'' + 4y' + 5y = 0 \), with \(y(0) = 0 \) and \(y'(0) = 1 \).

3. A Bernoulli equation is of the form
 \(y'(x) + P(x) y(x) = Q(x) y^n \).
 If \(n = 0 \) or \(n = 1 \), this equation is linear, and we have learned how to solve.
 For any other value of \(n \), substitute \(u = y^{1-n} \) and show that \(u \)
 must be a solution of \(u' + (1 - n) Pu = (1 - n) Q \). This can be solved in \(u \)
 and so one can get \(y \).
 Use this strategy to solve \(xy' + y = -xy^2 \).