Goals

- SVD-decomposition.
- Solving LLS with SVD-decomposition.
SVD Decomposition.

For any matrix $A \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and a 'diagonal' matrix $\Sigma \in \mathbb{R}^{m \times n}$, i.e.,

$$
\Sigma = \begin{pmatrix}
\sigma_1 & & & & & \\
& \ddots & & & & \\
& & \sigma_r & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{pmatrix}
$$

for $m \leq n$

with diagonal entries

$$
\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0
$$

such that $A = U \Sigma V^T$
SVD Decomposition.

For any matrix $A \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and a 'diagonal' matrix $\Sigma \in \mathbb{R}^{m \times n}$, i.e.,

$$
\Sigma = \begin{pmatrix}
\sigma_1 & & \\
& \ddots & \\
& & \sigma_r \\
0 & & \\
& & \ddots \\
0 & & & 0
\end{pmatrix}
$$

for $m \geq n$

with diagonal entries

$$
\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0
$$

such that $A = U \Sigma V^T$
SVD Decomposition.

- The decomposition

\[A = U \Sigma V^T \]

is called **Singular Value Decomposition** (SVD). It is very important decomposition of a matrix and tells us a lot about its structure.

- It can be computed using the Matlab command `svd`.

- The diagonal entries \(\sigma_i \) of \(\Sigma \) are called the singular values of \(A \). The columns of \(U \) are called *left singular vectors* and the columns of \(V \) are called *right singular vectors*.

The decomposition

\[A = U \Sigma V^T \]

is called **Singular Value Decomposition** (SVD). It is very important decomposition of a matrix and tells us a lot about its structure.

It can be computed using the Matlab command `svd`.

The diagonal entries \(\sigma_i \) of \(\Sigma \) are called the singular values of \(A \). The columns of \(U \) are called *left singular vectors* and the columns of \(V \) are called *right singular vectors*.

Using the orthogonality of \(V \) we can write it in the form

\[AV = U \Sigma \]

We can interpret it as follows: there exists a special orthonormal set of vectors (i.e. the columns of \(V \)), that is mapped by the matrix \(A \) into an orthonormal set of vectors (i.e. the columns of \(U \)).
Applications of SVD Decomposition.

Given the SVD-Decomposition of A,

$$A = U \Sigma V^T$$

with

$$\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0$$

one may conclude the following:

- $\text{rank}(A) = r$,
- $\mathcal{R}(A) = \mathcal{R}([u_1, \ldots, u_r])$,
- $\mathcal{N}(A) = \mathcal{R}([v_{r+1}, \ldots, v_n])$,
- $\mathcal{R}(A^T) = \mathcal{R}([v_1, \ldots, v_r])$,
- $\mathcal{N}(A^T) = \mathcal{R}([u_{r+1}, \ldots, u_m])$.
Moreover if we denote

\[U_r = [u_1, \ldots, u_r], \quad \Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r), \quad V_r = [v_1, \ldots, v_r], \]

then we have

\[A = U_r \Sigma_r V_r^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \]

This is called the dyadic decomposition of \(A \), decomposes the matrix \(A \) of rank \(r \) into sum of \(r \) matrices of rank 1.
Applications of SVD Decomposition.

- The 2-norm and the Frobenius norm of A can be easily computed from the SVD decomposition

\[
\|A\|_2 = \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_1
\]

\[
\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2} = \sqrt{\sigma_1^2 + \cdots + \sigma_p^2}, \quad p = \min\{m, n\}.
\]

- From the SVD decomposition of A it also follows that

\[
A^T A = V \Sigma^T \Sigma V^T \quad \text{and} \quad AA^T = U \Sigma \Sigma^T U^T.
\]

Thus, $\sigma_i^2, i = 1, \ldots, p$ are the eigenvalues of symmetric matrices $A^T A$ and AA^T and v_i and u_i are the corresponding eigenvectors.
Applications of SVD Decomposition.

Theorem

Let the SVD of $A \in \mathbb{R}^{m \times n}$ be given by

$$A = U_r \Sigma_r V_r^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

with $r = \text{rank}(A)$. If $k < r$

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T,$$

then

$$\min_{\text{rank}(D) = k} \| A - D \|_2 = \| A - A_k \|_2 = \sigma_{k+1},$$

and

$$\min_{\text{rank}(D) = k} \| A - D \|_F = \| A - A_k \|_F = \sqrt{\sum_{k+1}^{p} \sigma_i^2}, \quad p = \min \{m, n\}.$$
Consider the LLS

\[\min_x \| Ax - b \|_2^2 \]

Let \(A = U \Sigma V^T \) be the SVD of \(A \in \mathbb{R}^{m \times n} \).

Using the orthogonality of \(U \) and \(V \) we have

\[
\| Ax - b \|_2^2 = \| U^T (AVV^T x - b) \|_2^2 = \| \sum V^T_x - U^T b \|_2^2 \\
= \sum_{i=1}^{r} (\sigma_i z_i - u_i^T b)^2 + \sum_{i=r+1}^{m} (u_i^T b)^2.
\]
Thus,

\[
\min_x \|Ax - b\|_2^2 = \sum_{i=1}^{r} (\sigma_i z_i - u_i^T b)^2 + \sum_{i=r+1}^{m} (u_i^T b)^2.
\]
Solving LLS with SVD Decomposition.

Thus,

\[
\min_x \|Ax - b\|_2^2 = \sum_{i=1}^r (\sigma_i z_i - u_i^T b)^2 + \sum_{i=r+1}^m (u_i^T b)^2.
\]

The solution is given

\[
z_i = \frac{u_i^T b}{\sigma_i}, \quad i = 1, \ldots, r,
\]

\[
z_i = \text{arbitrary}, \quad i = r + 1, \ldots, n.
\]
Solving LLS with SVD Decomposition.

Thus,

\[
\min_x \|Ax - b\|_2^2 = \sum_{i=1}^{r} (\sigma_i z_i - u_i^T b)^2 + \sum_{i=r+1}^{m} (u_i^T b)^2.
\]

The solution is given

\[
z_i = \frac{u_i^T b}{\sigma_i}, \quad i = 1, \ldots, r,
\]
\[
z_i = \text{arbitrary}, \quad i = r + 1, \ldots, n.
\]

As a result

\[
\min_x \|Ax - b\|_2^2 = \sum_{i=r+1}^{m} (u_i^T b)^2.
\]
Recall that \(z = V^T x \). Since \(V \) is orthogonal, we find that
\[
\|x\|_2 = \|VV^T x\|_2 = \|V^T x\|_2 = \|z\|_2.
\]
All solutions of the linear least squares problem are given by \(z = V^T x \) with
\[
z_i = \frac{u_i^T b}{\sigma_i}, \quad i = 1, \ldots, r,
\]
\[
z_i = \text{arbitrary}, \quad i = r + 1, \ldots, n.
\]
Solving LLS with SVD Decomposition. Minimum norm solution

The minimum norm solution of the linear least squares problem is given by

\[x^\dagger = Vz^\dagger, \]

where \(z^\dagger \in \mathbb{R}^n \) is the vector with entries

\[z_i^\dagger = \frac{u_i^T b}{\sigma_i}, \quad i = 1, \ldots, r, \]
\[z_i^\dagger = 0, \quad i = r + 1, \ldots, n. \]

The minimum norm solution is

\[x^\dagger = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i \]
% compute the SVD:
[U,S,V] = svd(A);
s = diag(S);
% determine the effective rank r of A using singular values
r = 1;
while(r < size(A,2) & s(r+1) >= max(size(A))*eps*s(1))
 r = r+1;
end
d = U'*b;
x = V* ([d(1:r)./s(1:r); zeros(n-r,1)]);
Conditioning of a Linear Least Squares Problem.

- Suppose that the data b are

$$b = b_{ex} + \delta b,$$

where δb represents the measurement error.

- The minimum norm solution of $\min \|Ax - (b_{ex} + \delta b)\|_2^2$ is

$$x^\dagger = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i = \sum_{i=1}^{r} \left(\frac{u_i^T b}{\sigma_i} + \frac{u_i^T \delta b}{\sigma_i} \right) v_i.$$
Conditioning of a Linear Least Squares Problem.

- Suppose that the data b are

\[b = b_{ex} + \delta b, \]

where δb represents the measurement error.

- The minimum norm solution of $\min \|Ax - (b_{ex} + \delta b)\|_2^2$ is

\[x^* = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i = \sum_{i=1}^{r} \left(\frac{u_i^T b}{\sigma_i} + \frac{u_i^T \delta b}{\sigma_i} \right) v_i. \]

- If a singular value σ_i is small, then $\frac{u_i^T (\delta b)}{\sigma_i}$ could be large, even if $u_i^T (\delta b)$ is small. This shows that errors δb in the data can be magnified by small singular values σ_i.

Conditioning of a Linear Least Squares Problem.

% Compute A
\[t = 10.^(0:-1:-10)'; \]
\[A = [\text{ones(size}(t)) \ t \ t.^2 \ t.^3 \ t.^4 \ t.^5]; \]
% compute SVD of A
\[[U,S,V] = \text{svd}(A); \ \text{sigma} = \text{diag}(S); \]
% compute exact data
\[xex = \text{ones}(6,1); \ bex = A \times xex; \]
for \(i = 1:10 \)
 % data perturbation
 \[\text{deltab} = 10^(-i) \times (0.5-\text{rand(size}(bex))) \times bex; \]
 \[b = bex + \text{deltab}; \]
 % solution of perturbed linear least squares problem
 \[w = U' \times b; \]
 \[x = V \times (w(1:6) ./ \text{sigma}); \]
 \[\text{errx}(i+1) = \text{norm}(x - xex); \ \text{errb}(i+1) = \text{norm}(\text{deltab}); \]
end
\[\text{loglog}(\text{errb}, \text{errx}, '\times'); \]
\[\text{ylabel}('||x^{ex} - x||_2'); \ \text{xlabel}('||\delta b||_2') \]
Conditioning of a Linear Least Squares Problem.

- The singular values of A in the above Matlab example are:

\[
\begin{align*}
\sigma_1 &\approx 3.4 & \sigma_4 &\approx 7.2 \times 10^{-4} \\
\sigma_2 &\approx 2.1 & \sigma_5 &\approx 6.6 \times 10^{-7} \\
\sigma_3 &\approx 8.2 \times 10^{-2} & \sigma_6 &\approx 5.5 \times 10^{-11}
\end{align*}
\]

- The error $\|x_{ex} - x\|_2$ for different values of $\|\delta b\|_2$ (loglog-scale):

![Graph showing the error $\|x_{ex} - x\|_2$ vs $\|\delta b\|_2$]

- We see that small perturbations δb in the measurements can lead to large errors in the solution x of the linear least squares problem if the singular values of A are small.