MATH 3795
Lecture 10. Regularized Linear Least Squares.

Dmitriy Leykekhman

Fall 2008

Goals

▶ Understanding the regularization.
Consider the linear least square problem

\[
\min_{x \in \mathbb{R}^n} \| Ax - b \|_2^2.
\]

From the last lecture:

- Let \(A = U \Sigma V^T \) be the Singular Value Decomposition of \(A \in \mathbb{R}^{m \times n} \) with singular values
 \[
 \sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0
 \]
- The minimum norm solution is
 \[
 x^\dagger = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i
 \]
- If even one singular value \(\sigma_i \) is small, then small perturbations in \(b \) can lead to large errors in the solution.
Regularized Linear Least Squares Problems.

- If $\sigma_1/\sigma_r \gg 1$, then it might be useful to consider the **regularized linear least squares problem** (Tikhonov regularization)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda}{2} \|x\|_2^2.$$

Here $\lambda > 0$ is the **regularization parameter**.

- The regularization parameter $\lambda > 0$ is not known *a-priori* and has to be determined based on the problem data. See later.

- Observe that

$$\min_{x} \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda}{2} \|x\|_2^2 = \min_{x} \left\| \begin{pmatrix} A \\ \sqrt{\lambda}I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2^2.$$
Thus
\[
\min_x \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda}{2} \|x\|_2^2 = \min_x \left\| \begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2^2. \quad (1)
\]

For \(\lambda > 0 \) the matrix
\[
\begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix} \in \mathbb{R}^{(m+n) \times n}
\]
has always full rank \(n \). Hence, for \(\lambda > 0 \), the regularized linear least squares problem (1) has a unique solution.

The normal equation corresponding to (1) are given by
\[
\begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix}^T \begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix} x = (A^T A + \lambda I) x = A^T b = \begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix}^T \begin{pmatrix} b \\ 0 \end{pmatrix}.
\]
Regularized Linear Least Squares Problems.

- SVD Decomposition: \(A = U \Sigma V^T \), where \(U \in \mathbb{R}^{m \times m} \) and \(V \in \mathbb{R}^{n \times n} \) are orthogonal matrices and \(\Sigma \in \mathbb{R}^{m \times n} \) is a 'diagonal' matrix with diagonal entries

\[
\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min \{m,n\}} = 0.
\]

- Thus the normal to (1)

\[
(A^T A + \lambda I)x_\lambda = A^T b,
\]

can be written as

\[
(V \Sigma^T U^T U \Sigma V^T + \lambda I)x_\lambda = V \Sigma^T U^T b.
\]
Regularized Linear Least Squares Problems.

- SVD Decomposition: \(A = U \Sigma V^T \), where \(U \in \mathbb{R}^{m \times m} \) and \(V \in \mathbb{R}^{n \times n} \) are orthogonal matrices and \(\Sigma \in \mathbb{R}^{m \times n} \) is a 'diagonal' matrix with diagonal entries

\[
\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0.
\]

- Thus the normal to (1)
\[
(A^T A + \lambda I)x_\lambda = A^T b,
\]
can be written as
\[
(V\Sigma^T U^T U \Sigma V^T + \lambda I)x_\lambda = V\Sigma^T U^T b.
\]

- Rearranging terms we obtain
\[
V(\Sigma^T \Sigma + \lambda I)V^T x_\lambda = V\Sigma^T U^T b,
\]
multiplying both sides by \(V^T \) from the left and setting \(z = V^T x_\lambda \) we get
\[
(\Sigma^T \Sigma + \lambda I)z = \Sigma^T U^T b.
\]
Regularized Linear Least Squares Problems.

- The normal equation corresponding to (1),

\[(A^T A + \lambda I)x_\lambda = A^T b,\]

is equivalent to

\[
\begin{pmatrix}
\Sigma^T \Sigma + \lambda I
\end{pmatrix} z = \Sigma^T U^T b.
\]

where \(z = V^T x_\lambda. \)

- Solution

\[
z_i = \begin{cases}
\frac{\sigma_i(u_i^T b)}{\sigma_i^2 + \lambda}, & i = 1, \ldots, r, \\
0, & i = r + 1, \ldots, n.
\end{cases}
\]

- Since \(x_\lambda = V z = \sum_{i=1}^{n} z_i v_i, \) the solution of the regularized linear least squares problem (1) is given by

\[
x_\lambda = \sum_{i=1}^{r} \frac{\sigma_i(u_i^T b)}{\sigma_i^2 + \lambda} v_i.
\]
Regularized Linear Least Squares Problems.

Note that

$$\lim_{\lambda \to 0} x_\lambda = \lim_{\lambda \to 0} \sum_{i=1}^{r} \frac{\sigma_i (u_i^T b)}{\sigma_i^2 + \lambda} v_i = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i = x^\dagger$$

i.e., the solution of the regularized LLS problem (1) converges to the minimum norm solution of the LLS problem as λ goes to zero.
Regularized Linear Least Squares Problems.

Note that

$$\lim_{\lambda \to 0} x_\lambda = \lim_{\lambda \to 0} \sum_{i=1}^{r} \frac{\sigma_i (u_i^T b)}{\sigma_i^2 + \lambda} v_i = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i = x^\dagger$$

i.e., the solution of the regularized LLS problem (1) converges to the minimum norm solution of the LLS problem as λ goes to zero.

The representation

$$x_\lambda = \sum_{i=1}^{r} \frac{\sigma_i (u_i^T b)}{\sigma_i^2 + \lambda} v_i$$

of the solution of the regularized LLS also reveals the regularizing property of adding the term $\frac{\lambda}{2} \|x\|_2^2$ to the (ordinary) least squares functional. We have that

$$\frac{\sigma_i (u_i^T b)}{\sigma_i^2 + \lambda} \approx \begin{cases} 0, & \text{if } 0 \approx \sigma_i \ll \lambda \\ \frac{u_i^T b}{\sigma_i}, & \text{if } \sigma_i \gg \lambda. \end{cases}$$
Hence, adding $\frac{\lambda}{2} \|x\|_2^2$ to the (ordinary) least squares functional acts as a filter. Contributions from singular values which are large relative to the regularization parameter λ are left (almost) unchanged whereas contributions from small singular values are (almost) eliminated.

It raises an important question:

How to choose λ?
Regularized Linear Least Squares Problems.

- Suppose that the data are $b = b_{ex} + \delta b$. We want to compute the minimum norm solution of the (ordinary) LLS with unperturbed data b_{ex}

$$x_{ex} = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i$$

but we can only compute with $b = b_{ex} + \delta b$, we don’t know b_{ex}.

- The solution of the regularized least squares problem is

$$x_{\lambda} = \sum_{i=1}^{r} \left(\frac{\sigma_i (u_i^T b_{ex})}{\sigma_i^2 + \lambda} + \frac{\sigma_i (u_i^T \delta b)}{\sigma_i^2 + \lambda} \right) v_i.$$
We observed that

\[\sum_{i=1}^{r} \frac{\sigma_i (u_i^T b_{ex})}{\sigma_i^2 + \lambda} \to x_{ex} \quad \text{as} \quad \lambda \to 0. \]

On the other hand

\[\frac{\sigma_i (u_i^T \delta b)}{\sigma_i^2 + \lambda} \approx \begin{cases} 0, & \text{if } 0 \approx \sigma_i \ll \lambda \\ \frac{u_i^T \delta b}{\sigma_i}, & \text{if } \sigma_i \gg \lambda, \end{cases} \]

which suggests to choose \(\lambda \) sufficiently large to ensure that errors \(\delta b \) in the data are not magnified by small singular values.
Regularized Linear Least Squares Problems.

% Compute A
t = 10.^((0:-1:-10)’);
A = [ones(size(t)) t t.^2 t.^3 t.^4 t.^5];

% compute exact data
xex = ones(6,1); bex = A*xex;

% data perturbation of 0.1%
deltab = 0.001*(0.5-rand(size(bex))).*bex;
b = bex+deltab;

% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);

for i = 0:7 % solve regularized LLS for different lambda
 lambda(i+1) = 10^(-i)
xlambda = V * (sigma.*(U’*b) ./ (sigma.^2 + lambda(i+1)))
 err(i+1) = norm(xlambda - xex);
end

loglog(lambda,err,’*’); ylabel(’||x^{ex} - x_{\lambda}||_2’); xlabel(’\lambda’);
Regularized Linear Least Squares Problem.

- The error $\|x_{ex} - x_\lambda\|_2$ for different values of λ (loglog-scale):

![Graph showing the error for different values of λ on a loglog-scale.]
Regularized Linear Least Squares Problem.

- The error $\|x_{ex} - x_\lambda\|_2$ for different values of λ (loglog-scale):

![Graph showing the error $\|x_{ex} - x_\lambda\|_2$ for different values of λ.]

- For this example $\lambda \approx 10^{-3}$ is a good choice for the regularization parameter λ. However, we could only create this figure with the knowledge of the desired solution x_{ex}.

- How can we determine a $\lambda \geq 0$ so that $\|x_{ex} - x_\lambda\|_2$ is small without knowledge of x_{ex}.

- One approach is the Morozov discrepancy principle.
Suppose $b = b_{ex} + \delta b$. We do not know the perturbation δb, but we assume that we know its size $\|\delta b\|$.

Suppose the unknown desired solution x_{ex} satisfies $Ax_{ex} = b_{ex}$.

Hence,

$$\|Ax_{ex} - b\| = \|Ax_{ex} - b_{ex} - \delta b\| = \|\delta b\|.$$

Since the exact solution satisfies $\|Ax_{ex} - b\| = \|\delta b\|$ we want to find a regularization parameter $\lambda \geq 0$ such that the solution x_λ of the regularized least squares problem satisfies

$$\|Ax_\lambda - b\| = \|\delta b\|$$

This is Morozov’s discrepancy principle.
Regularized Linear Least Squares Problem.

Let’s see now this works for the previous Matlab example.

The error $\|x_{ex} - x_\lambda\|_2$ for different values of λ (log-log-scale)

The residual $\|Ax_\lambda - b\|_2$ and $\|\delta b\|_2$ for different values of λ (log-log-scale)
Regularized Linear Least Squares Problem.

- Morozov’s discrepancy principle: Find $\lambda \geq 0$ such that
 \[\|Ax_\lambda - b\| = \|\delta b\| \]
Regularized Linear Least Squares Problem.

- Morozov’s discrepancy principle: Find $\lambda \geq 0$ such that
 \[\| Ax_\lambda - b \| = \| \delta b \| \]

- To compute $\| Ax_\lambda - b \|$ for given $\lambda \geq 0$ we need to solve a regularized linear least squares problem

 \[\min_{x} \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda}{2} \| x \|_2^2 = \min_{x} \left\| \begin{pmatrix} A \\ \sqrt{\lambda}I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2^2 \]

 to get x_λ and then we have to compute $\| Ax_\lambda - b \|$.
Regularized Linear Least Squares Problem.

- Morozov’s discrepancy principle: Find $\lambda \geq 0$ such that
 \[\| Ax_\lambda - b \| = \| \delta b \| \]

- To compute $\| Ax_\lambda - b \|$ for given $\lambda \geq 0$ we need to solve a regularized linear least squares problem
 \[
 \min_x \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda}{2} \| x \|_2^2 = \min_x \left\| \begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2^2
 \]
 to get x_λ and then we have to compute $\| Ax_\lambda - b \|$.

- Let $f(\lambda) = \| Ax_\lambda - b \| - \| \delta b \|$. Finding $\lambda \geq 0$ such that
 \[f(\lambda) = 0 \]
 is a root finding problem. We will discuss in the future how to solve such problems. In this case f maps a scalar λ into a scalar $f(\lambda) = \| Ax_\lambda - b \| - \| \delta b \|$, but the evaluation of f requires the solution of a regularized LLS problems and can be rather expensive.