Assignment 5

1. (10 points)
 Use `fzero` to try to find a zero of each of the following functions in the given interval. Do you see any interesting or unusual behavior?

 (a) \(\text{atan}(x) - \pi/3 \) on \([0, 5]\)
 (b) \(1/(x - \pi) \) on \([0, 5]\)
 (c) \(\text{sign}(x - 2)\sqrt{|x - 2|} \) on \([1, 4]\)

2. (30 points) Here is a cubic polynomial with three closely spaced real roots.
 \[p(x) = 816x^3 - 3835x^2 + 6000x - 3125 \]

 (a) What are the exact roots of \(p \)?
 (b) Plot \(p(x) \) for \(1.43 < x < 1.71 \). Show the location of the three roots.
 (c) Starting with \(x_0 = 1.5 \), what does Newton’s method do?
 (d) Starting with the interval \([1, 2]\), what does bisection do?
 (e) What is `fzero(p, [1, 2])`? Why?

3. (20 points) Utilities must avoid freezing water mains. If we assume uniform soil conditions, the temperature \(T(x, t) \) at a distance \(x \) below the surface and time \(t \) after the beginning of a cold snap is given approximately by
 \[\frac{T(x, t) - T_s}{T_i - T_s} = \text{erf} \left(\frac{x}{2\sqrt{\alpha t}} \right) \]
 Here \(T_s \) is the constant surface temperature during the cold period, \(T_i \) is the initial soil temperature before the cold snap, and \(\alpha \) is the thermal conductivity of the soil. If \(x \) is measured in meters and \(t \) in seconds, then \(\alpha = 0.138 \times 10^{-6} \text{m}^2/\text{s} \). Let \(T_i = 20°C, T_s = -15°C \), and recall that water freezes at \(0°C \). Use `fzero` to determine how deep a water main should be buried so that it will not freeze until at least 60 days exposure under these conditions.