The Mason–Stothers theorem and the abc conjecture.

1. Let $f, g \in \mathbb{C}[T]$ be nonconstant and relatively prime.
 a) If $f^3 - g^2 \neq 0$, show $\deg(f^3 - g^2) \geq (1/2)\deg f + 1$, or equivalently $\deg f \leq 2(\deg(f^3 - g^2) - 1)$.
 b) Find infinitely many examples where equality occurs in the conclusion of part a. Start with an example where $\deg f = 3$ and $\deg g = 2$.
 c) When the hypothesis of relative primality is dropped, is part a still true?
 d) Find a lower bound on $\deg(f^3 - g^2)$ in terms of $\deg g$.

2. Assume the abc conjecture for some ε. Show there is a constant C_ε such that, for each integer $d \neq 0$, any solution to the equation $y^2 = x^3 + d$ in relatively prime integers x and y has $|x| \leq C_\varepsilon|d|^{(1+\varepsilon)/\varepsilon}$ and $|y| \leq C_\varepsilon|d|^{3(1+\varepsilon)/(1-\varepsilon)\varepsilon}$. Of course, C_ε depends on ε, but it does not depend on d. (The exponents can be written more simply as $2(1 + \varepsilon')$ and $3(1 + \varepsilon')$, but ε' is not the ε for which we are assuming the abc conjecture.) Can you remove the condition that x and y are relatively prime?

3. Show $\varepsilon = 0$ does not work in the abc-conjecture by considering $a = 3^{2^n} - 1$, $b = 1$, and $c = 3^{2^n}$ for large n, or by considering $a = 2(p^{(p-1)}) - 1$, $b = 1$, and $c = 2(2p-1)$ for large primes p. To start, show $a \equiv 0 \bmod{2^n}$ in the first case and $a \equiv 0 \bmod{p^2}$ in the second case. After showing the need for ε in the abc conjecture, use either of these examples to show $\kappa_\varepsilon \to \infty$ as $\varepsilon \to 0$.

4. For relatively prime $a, b \geq 1$, set $c = a + b$ and
 \[L(a, b) = \frac{\log c}{\log(\text{rad}(abc))}. \]
 For example, $L(23, 25) = \log(48)/\log(690) \approx 0.59226$ and $L(3, 125) = \log(128)/\log(30) \approx 1.42657$.
 a) Show the abc conjecture is equivalent to: for any $t > 1$, there are only finitely many relatively prime integers $a, b \geq 1$ such that $L(a, b) > t$.
 In particular, this means there is a largest value of $L(a, b)$ when $(a, b) = 1$. The largest known value is due to Eric Reyssat (1987): $L(2, 3^{10}, 109) \approx 1.62991$. (What is the factorization of c?)
 b) If you have had an analysis course, use either family of examples in exercise 3 to prove
 \[\lim_{\substack{g \in \mathbb{C}[T] \\
 \text{gcd}(a, b) = 1 \\
 a, b \geq 1}} L(a, b) \geq 1, \]
 where \lim means “lim sup.” Then prove the abc conjecture is equivalent to
 \[\lim_{\substack{g \in \mathbb{C}[T] \\
 \text{gcd}(a, b) = 1 \\
 a, b \geq 1}} L(a, b) = 1. \]

5. Use the Mason–Stothers theorem to show $u^2 - (T^4 + T^3)v^2 = 1$ has no nontrivial solutions u, v in $\mathbb{Q}[T]$. Can there be solutions in $\mathbb{C}[T]$? What does the Mason–Stothers theorem tell you about nontrivial solutions in $\mathbb{F}_5[T]$? You found a nontrivial solution in Homework 3.

6. Let S be a finite nonempty set of (monic) irreducibles in $F[T]$. We will say a polynomial in $F[T]$ is supported in S if its prime factors all lie in S. For example, $T^3 - T^2$ is supported in S when T and $T - 1$ are in S. Any nonzero constant is supported in S, for any S.
 We consider the equation
 \[f(T) + g(T) = h(T) \]

KEITH CONRAD
where \(f, g, h \in F[T] \) are supported in \(S \). That is, we restrict the possible irreducible factors of \(f, g, \) and \(h \), but we do not restrict the multiplicities of these factors.

a) When \(F = \mathbb{F}_p \), show there are only finitely many relatively prime solutions to the above equation which are supported in \(S \) and are not \(p \)-th powers. (Hint: Bound the degrees.) Note that for \(r \geq 0 \), the choice \(f_r = T^p \cdot r \) and \(h_r = 1 - T^p = (1 - T)^p \) for \(r \geq 1 \), with \(S \supset \{T, T - 1\} \), gives infinitely many relatively prime solutions with support in \(S \), but they are \(p \)-th powers if \(r > 0 \).

b) Show there are only finitely many nonzero constant relatively prime solutions in \(\mathbb{Q}[T] \) to the above equation which are supported in \(S \). (Bound the degrees as a first step, but more is needed since there are infinitely many polynomials with a given degree in \(\mathbb{Q}[T] \)\(.\)

c) Formulate an analogue with \(\mathbb{Z} \) in place of \(F[T] \), and draw consequences from the \(abc \) conjecture.

7. We consider the equation \(a(T) + b(T) = c(T) \) in \(F[T] \) in the special case where \(c(T) = c \) is a nonzero constant. This forces \(a(T), b(T) \), and \(c \) to be relatively prime.

By the Mason–Stothers theorem, if \(a(T) \) (or equivalently, \(b(T) \)) has nonzero derivative, then

\[\deg a(T) \leq N_0(a(T)) + N_0(c - a(T)) - 1. \]

This inequality is sometimes an equality, e.g., \(a(T) = 1 - rT^n, b(T) = rT^n, c = 1 \), where \(r \in F^\times \).

a) When \(F \) has characteristic 0, show the inequality is an equality if and only if \(a(T) \) equals 0 or \(c \) at the roots of \(a'(T) \). Symbolically, this says \(a'(\alpha) = 0 \iff a(\alpha) \in \{0, c\} \). The roots \(\alpha \) may not lie in \(F \). (Hint: First normalize \(c \) to 1 by division. Then think about the factorization of \(a(T) \), more specifically how the divisibility of \(a(T) - a(\alpha) \) by \(T - \alpha \) affects the divisibility of \(a'(T) \) by \(T - \alpha \).

b) In \(\mathbb{F}_p[T] \), show \(a(T) = T^p - T - 1 \) and \(a(T) = T^{p+1} - T \), with \(b(T) = 1 - a(T) \) and \(c = 1 \) in both cases, satisfy the derivative condition in part a but the inequality is strict.

c) When \(F \) has characteristic \(p \), show the inequality is an equality if and only if the following conditions hold: (1) \(a'(\alpha) = 0 \Rightarrow a(\alpha) \in \{0, c\} \), (2) \(p, \deg a(T) \equiv 1 \pmod{p} \), and (3) every root of \(a(T) \) has multiplicity prime to \(p \). Which of these conditions fail in part b?

Reciprocity laws.

8. Let \(\pi \in \mathbb{F}_2[T] \) be irreducible with degree \(d \) and \(f \in \mathbb{F}_p[T] \). Write

\[f(T)\pi'(T) \equiv a_0 + a_1 T + \cdots + a_{d-1} T^{d-1} \mod \pi, \]

where \(a_j \in \mathbb{F}_2 \). Prove \([f, \pi] = a_{d-1} \). (This generalizes the computational formula for \([T, \pi] \).) Test this formula in cases where you already computed \([f, \pi] \). Does such a formula work for \([f, g] \)\(? \)

9. For an odd prime \(p \) and irreducible \(\pi \in \mathbb{F}_p[T] \), introduce a symbol \([f, \pi] \)\(\in \mathbb{F}_p \) related to the equation \(x^p - x \equiv f \mod \pi \). Compute examples and prove a reciprocity law for this symbol.

Reversing reduction maps.

10. Since \(a \equiv b \mod p^k \Rightarrow a \equiv b \mod p \), there is a natural reduction map \(\mathbb{Z}/p^k \to \mathbb{Z}/p \), which is a ring homomorphism.

a) Show there is no ring homomorphism \(\mathbb{Z}/p \to \mathbb{Z}/p^k \) when \(k > 1 \).

b) Show \(a \equiv b \mod p \Rightarrow a^{p^{k-1}} \equiv b^{p^{k-1}} \mod p^k \). Deduce that \(u \mod p \mapsto u^{p^{k-1}} \mod p^k \) is an injective group homomorphism \((\mathbb{Z}/p)^\times \to (\mathbb{Z}/p^k)^\times \). What is the image (i.e., range) of this homomorphism when \(p = 5 \) and \(k = 3 \)? Check the image is a cyclic group explicitly.

11. For irreducible \(\pi \in \mathbb{F}_p[T] \), show \(f \mod \pi \to f^{N_p \pi^{k-1}} \mod \pi^k \) is well-defined, and provides an injective ring homomorphism \(\mathbb{F}_p[T]/\pi \to \mathbb{F}_p[T]/\pi^k \). What is the image of this homomorphism when \(p = 2, \pi = T^2 + T + 1, \) and \(k = 2 \)? Check the image is a field of size 4.

Hasse derivatives.

12. In \(\mathbb{F}_p[T] \), higher derivatives have a big problem: the \(p \)-th and higher derivatives are identically 0. The \(n \)-th derivative \((T^n)'(\pi) \) of \(T^n \) is

\[m(m - 1) \cdots (m - n + 1)T^{m-n}, \]
whose vanishing for \(n \geq p \) (independent of \(m \)) is due to the coefficient. On the other hand, consider the identity

\[
\frac{(T^m)^{(n)}}{n!} = \binom{m}{n} T^{m-n}.
\]

The left side looks bad in \(\mathbb{F}_p[T] \) when \(n \geq p \), because the numerator and denominator both vanish. But the right side is meaningful, since \(\binom{m}{n} \in \mathbb{Z} \), and leads to a nontrivial theory of higher derivatives, as follows.

Let \(F \) be any field. For \(n \geq 0 \), define the \(n \)th Hasse derivative \(\mathcal{D}^{(n)} : F[T] \to F[T] \) by

\[
\mathcal{D}^{(n)} \left(\sum_{m=0}^{d} a_m T^m \right) = \sum_{m=0}^{d} \binom{m}{n} a_m T^{m-n}.
\]

In particular, \(\mathcal{D}^{(1)}(T^m) = m T^{m-1} \) (so \(\mathcal{D}^{(1)} \) is ordinary differentiation) and \(\mathcal{D}^{(2)}(T^m) = \binom{m}{2} T^{m-2} \). When \(F \) has characteristic 0, then \(\mathcal{D}^{(n)} \) is \(1/n! \) times the \(n \)th derivative, but when \(F \) has characteristic \(p \) there is no connection between \(\mathcal{D}^{(n)} \) and ordinary \(n \)-th derivatives for \(n \geq p \).

a) What is \(\mathcal{D}^{(0)} \)? Show \(\mathcal{D}^{(n)}(T^m) = 0 \) for \(0 \leq m < n \). What is \(\mathcal{D}^{(n)}(T^n) \)?

b) Prove \(\mathcal{D}^{(n)}(f + g) = \mathcal{D}^{(n)}(f) + \mathcal{D}^{(n)}(g) \) and \(\mathcal{D}^{(n)}(fg) = \sum_{k=0}^{n} \binom{m}{n} (D^{(k)}f)(D^{(n-k)}g) \) for \(f, g \in F[T] \).

What is the formula for the \(n \)-th (ordinary) derivative of a product?

c) In \(\mathbb{F}_3[T] \), compute \(\mathcal{D}^{(3)}(T^9 + 2T^7 + 2T^3 + T + 1) \).

d) Compute all Hasse derivatives of \(T^p - 1 = (T - 1)^p \) in \(\mathbb{F}_p[T] \).

e) For \(n > 1 \), prove \(\mathcal{D}^{(n)} \) is not an iterate of \(\mathcal{D}^{(1)} \).

Devise a test for counting root multiplicities of polynomials using Hasse derivatives. Apply this test to determine the order of 1 as a root of \(T^7 + T^6 + T + 1 \) in \(\mathbb{F}_2[T] \) without factoring.

13. (Hasse derivatives of rational functions)

a) For \(f(T) \in F[T] \), show

\[
f(T + X) = \sum_{n \geq 0} (\mathcal{D}^{(n)} f)(X) T^n.
\]

The sum is finite, since \(\mathcal{D}^{(n)} f = 0 \) for \(n > \deg f \).

For example, with \(f(T) = T^4 + 2T + 1 \in \mathbb{F}_3[T] \),

\[
f(T + X) = (X^4 + 2X + 1) + (X^3 + 2)T + XT^3 + T^4.
\]

b) Show the map \(F[T] \to F[T][X] \) given by

\[
f \mapsto \sum_{n \geq 0} (\mathcal{D}^{(n)} f)(T) X^n
\]

is a ring homomorphism. For example, \(T^4 + 2T + 1 \) gets sent to \((T^4 + 2T + 1) + (T^3 + 2)X + TX^3 + X^4 \) when \(F = \mathbb{F}_3 \). Observe that the product rule in part b of the previous exercise is related to the homomorphism property.

c) Extend the operators \(\mathcal{D}^{(n)} \) from \(F[T] \) to all of \(F(T) \), preserving as many properties as you can. (If you have had calculus, then you already know how to extend \(\mathcal{D}^{(1)} \) to \(F(T) \), but \(\mathcal{D}^{(n)} \) is not an iterate of \(\mathcal{D}^{(1)} \), so you really need to work to extend all of the \(\mathcal{D}^{(n)} \)’s.) Does the equation \(\mathcal{D}^{(n)}(T^m) = \binom{m}{n} T^{m-n} \), which was a definition when \(m \geq 0 \), also hold for \(m < 0 \)? The binomial coefficient \(\binom{m}{n} \) for \(m < 0 \) is defined as the value at \(X = m \) of the polynomial \(\binom{X}{n} = \frac{X(X-1)\cdots(X-n+1)}{n!} \).

Do the formulas in part b of the previous exercise hold for \(f, g \in F(T) \)?
Carlitz polynomials.

14. This exercise describes an interesting analogue in \(F_p[T][X] \) of the polynomials \(X^m - 1 \in \mathbb{Z}[X] \). (Just reducing \(X^m - 1 \) modulo \(p \) is a somewhat cheap analogue, since, as a polynomial in \(F_p[T][X] \), its \(X \)-coefficients are constants in \(F_p \) rather than honest polynomials in \(T \).

Rather than a multiplicative theory based on roots of unity, we develop an additive theory. Here \(p \) can be any prime.

We start with powers. For \(n \geq 1 \), define \([T^n](X) \in F_p[T][X]\) recursively by
\[
[T](X) := X^p + TX, \quad [T^m](X) := [T]([T^{m-1}](X))
\]
for \(n \geq 2 \). For a general polynomial \(M = c_nT^n + \cdots + c_1T + c_0 \in F_p[T] \), define the Carlitz polynomial associated to \(M \) to be
\[
[M](X) := c_n[T^n](X) + \cdots + c_1[T](X) + c_0X \in F_p[T][X].
\]
Note \([c](X) = cX\) for any constant \(c \in F_p \). The polynomials \([M](X)\) are analogous to \(X^m - 1 \) (more accurately, to \((1 + X)^m - 1\)). (Our use of square brackets in \([M](X)\) should not be confused with its meaning in the notation \(\mathbb{Z}[T] \), just as the dual use of parentheses in a polynomial \(f(T) \) and in the field \(\mathbb{Q}(T) \) causes no confusion.)

Recall \(N(M) = \#(F_p[T]/M) = p^{\deg M} \) denotes the norm of \(M \).

a) Compute \([T^2](X)\) and \([T^3 - T](X)\) in \(F_p[T][X] \). In \(F_3[T][X] \), compute \([2T^3 + T + 2](X)\).

b) Show \([M](X)\) has \(X\)-degree \(\deg M = N(M) \). Moreover, show that as a polynomial in \(X \), \([M](X)\) is a “\(p \)-polynomial”:
\[
[M](X) = \sum_{j=0}^{\deg M} a_{j,M}(T)X^{p^j},
\]
(note \(X^{p^j} \), not \(X^j \)), with coefficients \(a_{j,M}(T) \in F_p[T] \). In particular, show \(a_{0,M}(T) = M \) and \(a_{\deg M,M}(T) \) is the leading coefficient of \(M \). Note \([M](X)\) has constant term 0.

c) Show \([M](X + Y) = [M](X) + [M](Y)\) and \([M](cX) = c[M](X)\) for any \(c \) in \(F_p \).

d) For \(M_1, M_2 \) in \(F_p[T] \), show
\[
[M_1 + M_2](X) = [M_1](X) + [M_2](X), \quad [M_1M_2](X) = [M_1]([M_2](X))\]
The second equation has an analogue for the polynomials \((1 + X)^m - 1\) in \(\mathbb{Z}[X] \) (what is it?).

e) For \(M \in F_p[T] \), prove \(a_{1,M} = (M^p - M)/(T^p - T) \).

f) For \(1 \leq j \leq \deg M \), prove the recursion
\[
a_{j,M} = \frac{a_{j-1,M} - a_{j-1,1,M}}{T^{p^{j-1}} - T}
\]
and then derive that \(a_{j,M} \) is a polynomial function of \(M \) (like \(\binom{m}{n} \) as a function of \(m \)):
\[
a_{j,M}(T) = \frac{\prod_{\deg h < j}(M - h)}{D_j}, \quad D_j := \prod_{h \text{ monic } \deg h = j} h.
\]
(Note \(h \) in the numerator of \(a_{j,M} \) runs over all polynomials of degree less than \(j \), including \(h = 0 \), while \(h \) in the denominator \(D_j \) runs over all monics of degree exactly \(j \).

g) Prove, for \(j \geq 1 \), that \(D_j = (T^{p^{j-1}} - T)D_{j-1} \). Thus,
\[
D_0 = 1, \quad D_1 = T^p - T, \quad D_2 = (T^{p^2} - T)(T^p - T), \quad D_3 = (T^{p^3} - T)(T^{p^2} - T)(T^p - T)^2.
\]
h) For primes \(p \), you know \(p | (\binom{p^k}{k}) \) for \(1 \leq k \leq p - 1 \). This says the intermediate coefficients of \((1 + X)^p\) are multiples of \(p \). Prove an analogue for the \(X \)-coefficients of \([x](X)\) when \(x \) is irreducible in \(F_p[T] \).

i) For \(f \in F_p[T][X] \) and monic irreducible \(\pi \in F_p[T] \), show \(f([\pi](X)) = f(\pi)^{N\pi} \) in \((F_p[T]/\pi)[X] \).

This is the analogue of \(f(X^p) = f(X)^p \) in \((\mathbb{Z}/p)[X] \) for any \(f \) in \(\mathbb{Z}[X] \).
15. (Carlitz actions) For nonzero $m \in \mathbb{Z}$, the units mod m are a group under multiplication. We can raise units to powers and see whether some unit generates the whole group.

On Homework 1 you found that, while $(\mathbb{Z}/p^2)\times$ is a cyclic group for any p, $(\mathbb{F}_p[T]/\pi^2)\times$ is not a cyclic group for $\deg \pi > 1$. With the help of Carlitz polynomials, we can repair this nonanalogy between \mathbb{Z} and $\mathbb{F}_p[T]$.

The key idea is to think additively: let the $\mathbb{F}_p[T]$-analogue of the multiplicative group $(\mathbb{Z}/m)\times$ be the additive group $\mathbb{F}_p[T]/M$, and “powers” on $\mathbb{F}_p[T]/M$ will be interpreted as the effect of Carlitz polynomials. In other words, the power u^k, for $u \in (\mathbb{Z}/m)\times$ and $k \in \mathbb{Z}$, will be replaced by the “Carlitz power” $[g](a)$, for $a \in \mathbb{F}_p[T]/M$ and $g \in \mathbb{F}_p[T]$. Here $[g](a)$ is the value of the $[g](X) \in \mathbb{F}_p[T][X]$ at $X = a$. (To write a^q instead of $[g](a)$ would be a horrible abuse of notation, but it would convey the intent more bluntly.)

a) For $a \in \mathbb{F}_p[T]/M$, show there is some monic $g \in \mathbb{F}_p[T]$ such that $[g](a) \equiv 0 \mod M$. (Hint: pigeonhole)

b) Show that 1 is a “Carlitz generator” of $\mathbb{F}_{3}[T]/(T^2+1)$. That is, $[g](1) \mod T^2 + 1 : g \in \mathbb{F}_3[T]$ = $\mathbb{F}_3[T]/(T^2 + 1)$.

On the other hand, show $T + 1 \in \mathbb{F}_3[T]/(T^2 + 1)$ is not a Carlitz generator.

c) Show 1 is a Carlitz generator of $\mathbb{F}_2[T]/(T^2)$ and also of $\mathbb{F}_2[T]/(T^2 + T + 1)$.

d) Show 1 is not a Carlitz generator of $\mathbb{F}_{23}[T]/M$, where $M = T^3 + 9T^2 + 13T + 1$. In fact, show $[g](1) \mod M : g \in \mathbb{F}_{23}[T] = \{c_1T + c_0 \mod M : c_0, c_1 \in \mathbb{F}_{23}\}$, so the Carlitz powers of 1 mod M are the residue classes where the coefficient of T^2 is 0.

For $a \in \mathbb{F}_p[T]/M$, its “Carlitz order” is defined to be the least degree monic g in $\mathbb{F}_p[T]$ such that $[g](a) \equiv 0 \mod M$. (At least one such g exists by part a.) For example, the Carlitz order of 1 in $\mathbb{F}_3[T]/(T^2 + 1)$ is T^2 and the Carlitz order of $T + 1 \in \mathbb{F}_3[T]/(T^2 + 1)$ is T. Note Carlitz orders are polynomials, not integers. We are not doing group theory.

e) Compute the Carlitz order of 1 mod M in part d.

f) For $a \in \mathbb{F}_p[T]/M$, show any g which satisfies $[g](a) \equiv 0 \mod M$ is divisible by the Carlitz order of a. If the Carlitz orders of two elements are relatively prime, prove the Carlitz order of their sum is the product of their Carlitz orders.

g) Let π be monic irreducible in $\mathbb{F}_p[T]$. Use exercise 14h to show $[\pi - 1](a) \equiv 0 \mod \pi$ for all $a \in \mathbb{F}_p[T]$. In particular, every element of $\mathbb{F}_p[T]/\pi$ has Carlitz order dividing $\pi - 1$. (Sound familiar to something classical?)

h) Prove $\mathbb{F}_p[T]/\pi$ (additive!) is cyclic in the Carlitz sense: it contains an element whose Carlitz powers fill up all of $\mathbb{F}_p[T]/\pi$.

i) Prove $\mathbb{F}_p[T]/\pi^k$ is cyclic in the Carlitz sense. This is the right analogue of $(\mathbb{Z}/p^k)\times$ being cyclic for all p.

j) It is known that $(\mathbb{Z}/p^k)\times$ is cyclic, unless $p = 2$ and $k \geq 3$. Using a proof of this classical result, can you devise a Carlitz analogue for $\mathbb{F}_p[T]/\pi^k$?

16. (Carlitz coefficient functions) Pursuing the analogy between $[M](X)$ and $(1 + X)^m - 1$, we look at their expansion coefficients:

$$(1 + X)^m - 1 = \sum_{n=1}^{m} \binom{m}{n} X^n, \quad [M](X) = \sum_{j=0}^{\deg M} a_{j,M}(T) X^{p^j}.$$

From the expansion, we know $\binom{m}{n} \in \mathbb{Z}$ when $0 \leq n \leq m$. (We do not need \(\binom{m}{n} \) here, but we know this is 1.) From the factorization formula

$$\binom{m}{n} = \frac{m(m-1) \cdots (m-n+1)}{n!}$$

for $n \geq 0$, we see $\binom{m}{n}$ is a polynomial function in m with rational coefficients.
Writing this polynomial as \(\binom{X}{n} \) extends the meaning of \(\binom{m}{n} \) to all integers \(m \) (including negatives) by substitution into the polynomial. It is not hard to check \((-X \choose n) = \left(-1^n \right) \binom{X+n-1}{n}\), which shows \(\binom{m}{n} \in \mathbb{Z} \) for all integers \(m \). Note \(\deg \ \binom{X}{n} = n \).

a) Inspired by the formula in exercise 14f, define for \(j \geq 1 \)
\[
E_j(X) := \frac{\prod_{\deg h < j} (X - h)}{D_j} \in \mathbb{F}_p(T)[X],
\]
Note \(h = 0 \) is included in the product. Set \(E_0(X) = X \).

As an example, \(E_1(X) = (X^p - X)/(T^p - T) \). Prove \(E_j(M) \in \mathbb{F}_p[T] \) for every \(M \) in \(\mathbb{F}_p[T] \), and also
\[
E_j(X) = \frac{X \prod_{\deg h < j} (X^{p-1} - h^{p-1})}{D_j}.
\]
(Hint: \(X^{p-1} - h^{p-1} = \prod_{c \in \mathbb{F}_p} (X - ch) \).

b) For all \(j \), prove \(E_j(X + Y) = E_j(X) + E_j(Y) \) and \(E_j(cX) = cE_j(X) \) where \(c \in \mathbb{F}_p \).

c) For \(j \geq 1 \), show
\[
E_j(TX) - TE_j(X) = E_{j-1}(X)^p, \quad (T^{p^j} - T)E_j(X) = E_{j-1}(X)^p - E_{j-1}(X).
\]

d) When \(M \) is monic with \(\deg M = j \), prove \(E_j(M) = 1 \). (What if \(M \) is not monic?) Setting \(Y = T^j \) in part b, conclude
\[
E_j(X) + 1 = \frac{\prod_{\deg h < j} (X + h)}{D_j}.
\]
Note the + sign in the numerator.

e) Let \(L_j = (T^p - T)(T^{p^2} - T) \cdots (T^{p^j} - T) \). Show
\[
E_j(X) = \sum_{i=0}^{j} (-1)^{j-i} X^{p^i} \frac{L_j}{D_j L_{j-i}}.
\]

Compute the Hasse derivatives (exercise 12) of \(E_j(X) \), with respect to \(X \).

f) Because \([M][X] \) is a \(p \)-polynomial in \(X \) (meaning the only terms are those involving \(X^{p^j} \)), it is best to consider \(E_j(X) \) (the polynomial derived from \(a_{j,M} \) as a function of \(M \)) to be analogous not to \(\binom{X}{j} \), but to \(\binom{X}{p^j} \). (For example, \(E_0(X) = X = \binom{X}{0} \) and \(E_j(X) \) has \(X \)-degree \(p^j \).) We fill out the sequence \(E_j \) to a larger family of polynomials using base \(p \) digit expansions, as follows.

Write \(n > 0 \) as \(n = b_0 + b_1 p + \cdots + b_s p^s \), where \(0 \leq b_j \leq p - 1 \). Define
\[
G_n(X) := \prod_{j=0}^{s} E_j(X)^{b_j} \in \mathbb{F}_p(T)[X].
\]
The effect of \(n \) on the right side is in the exponents, which are its base \(p \) digits. Set \(G_0(X) = 1 \).

As an example, \(2p - 1 = p - 1 + 1 \cdot p \), so \(G_{2p-1}(X) = E_0(X)^{p-1} E_1(X)^1 = X^{p-1} E_1(X) \). Note \(\deg G_n = n \).

Explicitly compute \(G_n(X) \) for \(0 \leq n \leq 2p - 1 \).

\(f \) Prove \(G_n(X + Y) = \sum_{k=0}^{n} \binom{n}{k} G_k(X) G_{n-k}(Y) \) and \(G_n(cX) = c^n G_n(X) \), where \(c \in \mathbb{F}_p \).

h) (Sinnott) The denominator of \(G_n(X) \) is \(\prod_{j=0}^{n} D_j^l \in \mathbb{F}_p[T] \). Denote this denominator as \(\Pi(n) \).

Comparing \(G_n(X) \) with \(\binom{X}{n} \) suggests \(\Pi(n) \) is an \(\mathbb{F}_p[T] \)-analogue of \(n! \). Show the highest power of an irreducible \(\pi \in \mathbb{F}_p[T] \) that divides \(\Pi(n) \) is
\[
\sum_{k \geq 1} \left\lfloor \frac{n}{p^k} \right\rfloor,
\]
where \(\lfloor \cdot \rfloor \) is the usual greatest integer function. This resembles the classical formula \(\sum_{k \geq 1} \lfloor n/p^k \rfloor \) for the highest power of \(p \) dividing \(n! \).
17. Here is a striking analogy between the families \(\binom{X}{n} \) in \(\mathbb{Q}[X] \) and \(G_n(X) \in F_p(T)[X] \).

a) Using the formula \(\text{deg}(\binom{X}{n}) = n \), prove any polynomial \(f(X) \in \mathbb{Q}[X] \) of degree \(d \) (say) can be written in a unique manner as a finite sum of the form

\[
f(X) = \sum_{n=0}^{d} c_n \binom{X}{n},
\]

with \(c_n \in \mathbb{Q} \).

b) What is this expansion for \((X^3 - X)/2 \)? For \(X^2 + X/4 - 1 \)?

c) Prove \(f(Z) \subset \mathbb{Z} \iff c_n \in \mathbb{Z} \) for all \(n \).

d) Prove any polynomial \(f \in F_p(T)[X] \) of degree \(d \) (say) can be written uniquely in the form

\[
f(X) = \sum_{n=0}^{d} c_n G_n(X),
\]

where \(c_n \in F_p(T) \), and \(f(F_p[T]) \subset F_p[T] \iff c_n \in F_p[T] \) for all \(n \).

18. (Cyclotomic polynomials) The \(m \)-th cyclotomic polynomial, \(\Phi_m(X) \), is defined to be the polynomial whose roots are the different complex roots of unity of exact order \(m \) (called primitive \(m \)-th roots of unity):

\[
\Phi_m(X) := \prod(X - \omega),
\]

where \(\omega \) runs over the primitive \(m \)-th roots of unity in \(\mathbb{C} \). For example,

\[
\Phi_1(X) = X - 1, \quad \Phi_2(X) = X + 1, \quad \Phi_3(X) = X^2 + X + 1, \quad \Phi_4(X) = X^2 + 1.
\]

Collecting the \(m \)-th roots of unity according to their exact order, we have the basic identity

\[
X^m - 1 = \prod_{d|m} \Phi_d(X).
\]

a) Prove \(\Phi_m(0) = 1 \) for \(m \geq 2 \). What is \(\Phi_m(1) \)?

b) As the examples suggest, \(\Phi_m(X) \) has integer coefficients. This is not evident from its definition, which only gives \(\Phi_m(X) \in \mathbb{C}[X] \). Prove \(\Phi_m(X) \in \mathbb{Z}[X] \) by induction on \(m \) and Gauss’ lemma.

c) Are the coefficients of \(\Phi_m(X) \) equal to 0 or \(\pm 1 \) for all \(m \)?

d) Since \(\Phi_m(X) \) has coefficients in \(\mathbb{Z} \), the polynomial can be reduced \(\mod p \). That is, we can consider \(\Phi_m(X) \) in \(F_p[X] \). Let \(K \supset F_p \) be a field over which \(\Phi_m(X) \) decomposes into linear factors. Prove that when \(p \) does not divide \(m \), the roots of \(\Phi_m(X) \) in \(K \) are primitive \(m \)-th roots of unity. (This does require proof, since we defined \(\Phi_m(X) \) as the reduction \(\mod p \) of some integral polynomial, not as a polynomial having certain roots over \(F_p \).) What happens when \(p|m \)?

e) Use the factorization of \(X^p - 1 \) into cyclotomic polynomials to prove \((\mathbb{Z}/p)^\times \) is cyclic. This is probably not the same as your proof of this result when you were a first-year student. Does the proof extend to show the group of nonzero elements of any finite field is cyclic?

19. (Roots of Carlitz polynomials) We know by Homework 1 that there is a field \(K \supset F_p(T) \) in which \([M](X) \) decomposes into linear factors as a polynomial in \(X \).

a) Show all the roots of \([M](X) \) in \(K \) are distinct. (Hint: Consider the derivative of \([M](X) \) with respect to \(X \), trying \(M = T \) to get a sense of what’s going on.)

b) Let \(\Lambda_M \) be the set of all \(X \)-roots of \([M](X) \). For example, \(\Lambda_T \) contains 0 and the \((p - 1)\)-th roots of \(-T\).

Prove \(\Lambda_M \) is an additive group. For \(\alpha \in \Lambda_M \) and \(A \in F_p[T] \), show \([A](\alpha) \in \Lambda_M \). Then, for \(A, B \) in \(F_p[T] \), prove

\[
[A](\alpha) = [B](\alpha) \text{ for all } \alpha \in \Lambda_M \iff A \equiv B \text{ mod } M.
\]

This is the analogue of: \(\omega^a = \omega^b \) for all \(n \)-th roots of unity \(\omega \in \mathbb{C} \) if and only if \(a \equiv b \text{ mod } n \).

c) For \(A \in F_p[T] \), show \(\{ [A](\alpha) : \alpha \in \Lambda_M \} = \Lambda_M \) if and only if \((A, M) = 1 \). This is the analogue of: \(\{ \omega^a : \omega^m = 1 \} = \{ \omega : \omega^m = 1 \} \) if and only if \((a, m) = 1 \).
d) For monic M in $\mathbb{F}_p[T]$, set
\[
\Phi_M(X) = \prod_{\substack{D|M \\ \deg D > 0}} (X - \alpha),
\]
where the product is taken over roots α of $[M](X)$ which are not roots of $[D](X)$ for any monic proper divisor D of M. This is an analogue of the nth cyclotomic polynomial, and the roots of $\Phi_M(X)$ could be considered as “primitive” roots of $[M](X)$. What is the X-degree of $\Phi_M(X)$? Show $[M](X) = \prod_{D|M} \Phi_D(X)$, the product taken over the monic divisors D of M, and show $\Phi_M(X)$ lies in $\mathbb{F}_p[T][X]$. Compute $\Phi_1(X)$, $\Phi_T(X)$, $\Phi_{T+1}(X)$, and $\Phi_{T^2}(X)$.

e) Read a proof that $\Phi_m(X)$ is irreducible in $\mathbb{Q}[X]$, and adapt the proof to show $\Phi_M(X)$ is irreducible in $\mathbb{F}_p(T)[X]$.

f) If you know Galois theory, extend the usual proof that $\text{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \cong (\mathbb{Z}/m)^\times$ to give a natural proof that $\text{Gal}(\mathbb{F}_p(T, \Lambda_M)/\mathbb{F}_p(T)) \cong (\mathbb{F}_p[T]/M)^\times$. (As in the classical case, it is best to start by defining a map from the units mod M to the Galois group, rather than the other way around.)

g) If you know algebraic number theory, prove an irreducible $\pi \in \mathbb{F}_p[T]$ is unramified in $\mathbb{F}_p(T, \Lambda_M)$ if and only if $(\pi, M) = 1$. If $(\pi, M) = 1$ and π is monic, prove the isomorphism in part f identifies the Frobenius at π in $\text{Gal}(\mathbb{F}_p(T, \Lambda_M)/\mathbb{F}_p(T))$ with the congruence class $\pi \mod M$. This is similar to the description of Frobenius elements in cyclotomic extensions of \mathbb{Q}.