1. Starting with the 2-square representation
 \[261 = \left(\frac{1725}{221} \right)^2 + \left(\frac{3126}{221} \right)^2, \]
carry out the geometric argument from class until you get a 2-square representation 261 = \(a^2 + b^2 \) with \(a, b \in \mathbb{Z} \).

2. Determine which of the following fractions are sums of two squares in \(\mathbb{Q} \): \(\frac{9}{10}, \frac{62}{77}, \frac{369}{40} \).

3. Starting with the 3-square representation
 \[13 = \left(\frac{18}{11} \right)^2 + \left(\frac{15}{11} \right)^2 + \left(\frac{32}{11} \right)^2, \]
carry out the geometric argument from class until you get a 3-square representation 13 = \(a^2 + b^2 + c^2 \) with \(a, b, c \in \mathbb{Z} \).

4. Determine which of the following integers are sums of 3 squares in \(\mathbb{Z} \), using Legendre’s theorem: 124, 983, 2005.

5. In \(\mathbb{Q}[\sqrt{2}] \), compute \(\frac{1-9\sqrt{2}}{5+3\sqrt{2}} \) in the form \(a+b\sqrt{2} \) with \(a, b \in \mathbb{Q} \).

6. Just using modular arithmetic, show for \(a, b, c \in \mathbb{Z} \) that
 \[a^2 + b^2 + c^2 \equiv 0 \mod 8 \implies a, b, c \text{ are all even}. \]

Conclude that for \(n \in \mathbb{Z}^+ \), if we write \(n = 4^k n' \) with \(k \geq 0 \) and \(n' \) not divisible by 4 (i.e., extract the largest power of 4 from \(n \)), then \(n \) is a sum of 3 squares in \(\mathbb{Z} \) if and only if \(n' \) is a sum of 3 squares in \(\mathbb{Z} \). (Don’t appeal to results in class about sums of 3 squares in \(\mathbb{Q} \)!

7. Show that the following conditions on a positive integer \(n \) are equivalent:
 1) \(n = x^2 + y^2 + z^2 \) for some \(x, y, z \in \mathbb{Z} \),
 2) \(x^2 + y^2 + z^2 - nw^2 = 0 \) has a solution in \(\mathbb{Z} \) other than \((0,0,0,0)\),
 3) \(x^2 + y^2 + z^2 = 0 \) has a solution in \(\mathbb{Q}[\sqrt{-n}] \) other than \((0,0,0)\).

8. For the following values of \(n \), find a solution to \(-1 = x^2 + y^2 \) in \(\mathbb{Q}[\sqrt{-n}] \): 1, 3, 5, 6, 10, 14.

9. From each of the equations
 \[83 = 3^2 + 5^2 + 7^2, \quad 83 = \left(\frac{7}{3} \right)^2 + \left(\frac{53}{15} \right)^2 + \left(\frac{121}{15} \right)^2, \]
derive a solution to \(-1 = x^2 + y^2 \) in \(\mathbb{Q}[\sqrt{-83}] \).

10. Generalize the formula for primitive Pythagorean triples in \(\mathbb{Z} \) to a formula for all “primitive” solutions to \(f(t)^2 + g(t)^2 = h(t)^2 \) in polynomials \(f(t), g(t), h(t) \).