ADVICE ON MATHEMATICAL WRITING

This handout lists some writing tips when you are dealing with mathematical text.

1. Notation

(1) Do not begin sentences with a symbol.

Bad: x is positive, so it has a square root.
Good: Since x is positive, it has a square root.

Bad: Let n be an even number. $n = 2m$ for some $m \in \mathbb{Z}$.
Good: Let n be an even number. Thus $n = 2m$ for some $m \in \mathbb{Z}$.
Good: Let n be an even number, so $n = 2m$ for some $m \in \mathbb{Z}$.

Bad: One solution is $f(x) = \sin x$. $f(x)$ is periodic.
Good: One solution is $f(x) = \sin x$. In this case, $f(x)$ is periodic.

(2) If two mathematical symbols are not part of the same mathematical expression, they should never appear next to each other with no words or grammatical marks in between them.

Bad: If $n \neq 0 n^2 > 0$.
Good: If $n \neq 0$, $n^2 > 0$.
Good: If $n \neq 0$ then $n^2 > 0$.

(3) When introducing notation, make it fit the context. A lot of the time a choice of notation is just common sense.

Bad: Let m be a prime.
Good: Let p be a prime.

Bad: Let X be a set, and pick an element of X, say t.
Good: Let X be a set, and pick an element of X, say x.

Bad: Pick two elements of the set X, say x and u.
Good: Pick two elements of the set X, say x and y.
Good: Pick two elements of the set X, say x_1 and x_2.
Good: Pick two elements of the set X, say x and x'.

(4) Always define new notation (is it a number? a function? of what type?) and be clear about its logical standing.

Very bad: Since n is composite, $n = ab$.
Bad: Since n is composite, $n = ab$ for some integers a and b.
Good: Since n is composite, $n = ab$ for some integers a and b greater than 1.

[Every integer is a product, since $n = n \cdot 1$, so writing $n = ab$ alone introduces no constraint whatsoever.]

Bad: If a polynomial $f(x)$ satisfies $f(n) \in \mathbb{Z}$, does $f(x)$ have integer coefficients?
Good: If a polynomial $f(x)$ satisfies $f(n) \in \mathbb{Z}$ for every $n \in \mathbb{Z}$, does $f(x)$ have integer coefficients?
(5) Do not give multiple meanings to the same variable in a proof.

Bad: To show the sum of two even numbers is even, suppose a and b are even. Then $a = 2m$ and $b = 2m$, for some integer m. We have $a + b = 4m = 2(2m)$, which is even. [Notice this “proof” showed the sum of two even numbers is always a multiple of 4, which is nonsense.]

Good: To show the sum of two even numbers is even, suppose a and b are even. Then $a = 2m$ and $b = 2n$, for some integers m and n. We have $a + b = 2m + 2n = 2(m + n)$, which is even.

(6) Avoid overloading meaning into notation.

Bad: Let $x > 0 \in \mathbb{Z}$.
Good: Let x be an integer, with $x > 0$.
Good: Let x be a positive integer.

(7) NEVER use the logical symbols \forall, \exists, \land, \lor when writing, except in a paper on logic. Write out what you mean in ordinary language.

Bad: The conditions imply $a = 0 \land b = 1$.
Good: The conditions imply $a = 0$ and $b = 1$.

Bad: If \exists a root of the polynomial then there is a linear factor.
Good: If there is a root of the polynomial then there is a linear factor.

Bad: If the functions agree at three points, they agree \forall points.
Good: If the functions agree at three points, they agree at all points.

(8) Avoid silly abbreviations, or the misuse of standard notations, or the use of abbreviations which are used strictly on the blackboard (like WLOG, s.t., and iff).

Bad: When n is \int, $2n$ is an even number.
Good: When n is integral, $2n$ is an even number.
Good: When n is an integer, $2n$ is an even number.

Bad: Let z be a \mathbb{C}.
Good: Let z be a complex number.
Good: Choose $z \in \mathbb{C}$.

Bad: WLOG, we can assume $x > 0$.
Good: Without loss of generality, we can assume $x > 0$.

Bad: There is a point x s.t. $f(x) > 0$.
Good: There is a point x such that $f(x) > 0$.

(9) If a piece of notation is superfluous in your writing, don’t use it.

Bad: Every differentiable function f is continuous.
Good: Every differentiable function is continuous.
Good: All differentiable functions are continuous.

Bad: A square matrix A is invertible when its determinant is not 0.
Good: A square matrix A is invertible when $\det A \neq 0$.
Good: A square matrix is invertible when its determinant is not 0.

The difference between the use of A in the Bad example and in the first Good example above is that in the first Good example something is actually done with
A: we refer to it again in det A. In the Bad example the use of A is superfluous notation.

2. Equations and expressions

(1) If an equation or expression is important (either for its own sake or because you will refer back to it later), display the equation on its own line. If you need to refer to it later, label it (as (1), (2), and so on) on the side. Of course, if you only need to make a reference to a displayed equation or expression immediately before or after it appears, you could avoid a label and say “by the above equation,” etc.

Bad: As a special case of the binomial theorem,
\[(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\]

[suppose several lines of text are here]

By the equation 8 lines up, we see...

Good: As a special case of the binomial theorem,
\[(2.1) (x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\]

[suppose several lines of text are here]

By equation (2.1), we see...

(2) If a single computation involves several steps, especially more than two, present the steps in stacked form.

Bad:
\[(x + 1)^3 = (x + 1)^2(x + 1) = (x^2 + 2x + 1)(x + 1) = x^3 + 3x^2 + 3x + 1.\]

Good:
\[(x + 1)^3 = (x + 1)^2(x + 1)
= (x^2 + 2x + 1)(x + 1)
= x^3 + 3x^2 + 3x + 1.\]

(3) Equations do not stand by themselves. They appear as part of a sentence and should be punctuated accordingly! If an equation ends a sentence, place a period at the end of the line. If an equation appears in the middle of a sentence, use a comma after the equation if one would naturally pause there. Sometimes no punctuation is needed after the equation. The following three examples illustrate each possibility.

Good: We call \(x_0\) a critical point of \(f\) when \(f\) is differentiable and
\[f'(x_0) = 0.\]

Good: When \(f\) is differentiable, and \(x_0\) satisfies
\[f'(x_0) = 0,\]
we call \(x_0\) a critical point.
Good: When f is differentiable, any x_0 where

$$f'(x_0) = 0$$

is called a critical point.

(That the equation was displayed separately in each case simply serves to highlight its importance to the reader. It could have been included within the main text, and punctuation rules of course apply in the same way. The words “critical point” were set in italics to emphasize that this particular term is being defined. Some books put defined terms in **bold** in the definitions.)

3. Parentheses and Commas

1. Avoid pointless parentheses in mathematical expressions.

 Bad: $(x + y)(x - y) = (x^2 - y^2)$. [The parentheses on the right have no purpose.]
 Good: $(x + y)(x - y) = x^2 - y^2$.

 Bad: If 7 is a factor of the product $(a_1a_2\cdots a_n)$, then . . .
 Good: If 7 is a factor of the product $a_1a_2\cdots a_n$, then . . .

 Bad: The length is a factor of $(p - 1)$.
 Good: The length is a factor of $p - 1$.

 Good: $(a + b)^2 - (a + c)^2 = b^2 - c^2 + 2ab - 2ac$.
 Good: $(a + b)^2 - (a + c)^2 = (b^2 - c^2) + 2ab - 2ac$. [This example is good only if the writer wants the reader to view $b^2 - c^2$ as a single part of the right side.]

2. Use parentheses to avoid confusing the meaning between a subtraction sign and a negative sign in a mathematical expression.

 Very Bad: $(a + b) - c = -ac - bc$. [If you look at the right side, you can see the writer meant for the left side to be the product of $a + b$ and $-c$, but the left side instead looks like “a plus b minus c.”]
 Bad: $(a + b) \cdot -c = -ac - bc$.
 Good: $(a + b)(-c) = -ac - bc$.

3. Commas are natural places to pause briefly, but not as fully as a period. If you read something in your head, you should be able to notice badly placed commas, either because no pause should occur or because a period should be there instead of a comma.

 Bad: The condition we want is, $a = 2b$.
 Good: The condition we want is $a = 2b$.

 Bad: The set is infinite, we pick a large finite subset of it.
 Good: The set is infinite. We pick a large finite subset of it.

4. While “If . . ., then . . .” is a common phrase, it is bad English to write “Let . . ., then . . .” with a comma as the separator.

 Very Bad: Let n be an even number, then $n = 2m$ for some $m \in \mathbb{Z}$.
 Good: Let n be an even number. Then $n = 2m$ for some $m \in \mathbb{Z}$.
 Good: Let n be an even number, so $n = 2m$ for some $m \in \mathbb{Z}$.
4. Use helpful words

(1) Tell the reader where you are going.

Good: We will prove this by induction on \(n \).
Good: We will prove this by induction on the dimension.
Good: We argue by contradiction.
Good: Now we consider the converse direction.
Good: But \(f(x) \) is actually continuous. To see why, consider...
Good: The inequality \(a \leq b \) is strict: \(a < b \). Indeed, if there was equality then...

(2) Use key words to show the reader how you are reasoning. These include:

since, because, on the other hand, observe, note.

At the same time, vary your choice of words to avoid monotonous writing. This may require you to completely rewrite a paragraph.

Bad: We proved, for any \(a \), that if \(a^2 \) is even, then \(a \) is even. Now suppose \(a^8 \) is even. Since \(a^8 = (a^4)^2 \), we obtain that \(a^4 \) is even. Then \(a^2 \) is even. Then \(a \) is even.
Good: We proved, for any \(a \), that if \(a^2 \) is even, then \(a \) is even. Now suppose \(a^8 \) is even. Then, by successively applying the result we proved to \(a^4 \), \(a^2 \), and \(a \), we see that \(a \) is even.

(3) Watch your spelling! If you aren’t sure of the difference between “necessary” and “neccessary” or “discriminate” and “discriminant,” look it up. (Canadian students may use their own flavour of spelling, but non-native English speakers should be careful not to let the grammatical rules of their native language affect their writing in English where those rules are different.)

Use “it’s” only to mean “it is”. The word “its”, like “his” and “her”, refers to possession.

Bad: It’s clear that \(f(x) \) has a real root since it’s degree is odd.
Bad: Its clear that \(f(x) \) has a real root since its degree is odd.
Good: It’s clear that \(f(x) \) has a real root since its degree is odd.
Good: Since \(f(x) \) has odd degree, clearly it has a real root. [Write like this if you can’t remember the difference between its and it’s.]

Bad: Its surely true that starting your final draft on the last day will leave its mark in your work.
Good: It’s surely true that starting your final draft on the last day will leave its mark in your work.

5. Types of Mathematical Results

In mathematics, results are labelled as either a theorem, lemma, or corollary. What’s the difference?

- A theorem is a main result.
- A lemma is a result whose primary purpose is to be used in the proof of a theorem but which, on its own, is not considered significant or as interesting.
- A corollary is a result that follows from a theorem. It could be a special case of the theorem or a particularly important consequence of it.
So theorems stand on their own, a lemma always comes before a theorem, and corollaries always come after a theorem. The order in which these appear, then, is always

Lemma, Theorem, Corollary.

There is no reason a theorem must have a lemma before it or a corollary after it. But if you have a string of lemmas which don’t lead to a theorem, for instance, then it will look strange to anyone experienced with mathematical writing.

Here are two examples. First we give a lemma and a theorem whose proof depends on the lemma.

Lemma 5.1. In the integers, if \(d \) is a factor of \(a \) and \(b \) then \(d \) is a factor of \(ax + by \) for any integers \(x \) and \(y \).

Proof. Since \(d \) is a factor of both \(a \) and \(b \), we can write \(a = dm \) and \(b = dn \) for some integers \(m \) and \(n \). Then for any \(x \) and \(y \) we have

\[
ax + by = dmx + dny = d(mx + ny),
\]

which shows \(d \) is a factor of \(ax + by \). □

Theorem 5.2. If \(a \) and \(b \) are integers and \(ax_0 + by_0 = 1 \) for some integers \(x_0 \) and \(y_0 \), then \(a \) and \(b \) have no common factor greater than 1.

Proof. This will be a proof by contradiction. Suppose there is a common factor \(d > 1 \) of \(a \) and \(b \). Applying Lemma 5.1 to the particular combination \(ax_0 + by_0 \), \(d \) is a factor of \(ax_0 + by_0 \), so \(d \) is a factor of 1. But there are no factors of 1 which are greater than 1, so we have a contradiction. Therefore \(a \) and \(b \) have no common factor greater than 1. □

Theorem 5.2 uses Lemma 5.1, but the statement of Lemma 5.1 was deemed (by the author writing it) to be worth isolating on its own. So it becomes a lemma rather than appear completely inside the proof of Theorem 5.2. Perhaps the author anticipates other uses of Lemma 5.1, and so wants to state it separately.

Next we give a theorem in linear algebra and a corollary which follows from the theorem.

Theorem 5.3. For any two square matrices \(A \) and \(B \), \(\det(AB) = (\det A)(\det B) \).

[The proof of this is hard and is not included here.]

Corollary 5.4. An invertible matrix has a nonzero determinant.

Proof. If \(A \) is invertible, say of size \(n \times n \), then \(AB = I_n \) for some matrix \(B \). Taking the determinant of both sides, Theorem 5.3 tells us

\[
(\det A)(\det B) = \det(I_n) = 1,
\]

so \(\det A \neq 0 \). □

Why do we need lemmas at all? Could we call everything a theorem? Yes, but the point of the three different names (lemma, theorem, corollary) is to indicate to the reader how the writer views the comparative standing of the different results.

Although lemmas are principally intended to be used for the proof of a more important result, sometimes a lemma turns out to be a very significant result and is even named after someone, but is still referred to as a lemma for historical reasons. Examples include Hensel’s lemma (in number theory), Nakayama’s lemma (in commutative algebra), the Riemann–Lebesgue lemma (in harmonic analysis), and the Schwarz lemma (in complex
These named lemmas are so standard in the literature that, for instance, to refer to Hensel’s theorem or Nakayama’s theorem would generate very strange looks.

In addition to the mathematical results in a paper, terminology is used and may need to be defined for the reader. Remember that a definition is not a theorem or anything like that. It’s just a description of a new word. Here are two definitions.

Definition 5.5. A **geodesic** is a curve that locally minimizes lengths between points.

Definition 5.6. When all the elements in a partially ordered set are comparable to each other, we call it a **totally ordered** set.

Here is a bad definition.

Definition 5.7. For differentiable functions \(f(x) \) and \(g(x) \), the derivative of their sum \(f(x) + g(x) \) is \(f'(x) + g'(x) \).

Why isn’t this a definition? Because the derivative is defined in a separate way, using limits, and you need to prove that \(f'(x) + g'(x) \) is really the value of the derivative of \(f(x) + g(x) \). In other words, this definition is in fact a theorem.

6. **Fonts**

There are four points to make about italic and non-italics font in mathematical writing:

- Single letters that stand for something are set in italics: \(a, b, a + bi, x, \) and \(y \). The quadratic formula is not

\[
\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

but rather

\[
\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Doesn’t the second version look better? You bet it does. Single function letters are also in italics, like \(f(x) \) and \(e^x \), not \(f(x) \) or \(e^x \) (yuck!). The Fibonacci numbers are written as \(F_n \), not as \(F_n \) or (worse) \(F_n \).

- Numbers in mathematical expressions are never in italics: the polynomial is \(x^2 - 3x + 1 \), not \(x^2 - 3x + 1 \). Basically, italic numbers look awful and should be avoided in all circumstances.

- Traditional functions whose label uses several letters are written in non-italic font: \(\sin \theta, \cos \alpha, \) and \(\log t \), not \(\sin \theta, \cos \alpha, \) or \(\log t \).

- Lemmas, theorems, and corollaries are typeset wholly in italics. Definitions and examples are not in italics, except that when you introduce a technical term for the first time it may be a good idea to typeset it in italics so it stands out. See the previous section for illustrations of this.

You should open up a math book and notice this traditional way of typesetting if you were not explicitly aware of it before.

7. **Proofread**

Before submitting your work, read it over again. If you don’t think something is well written, rewrite it.
8. Exercises

The following sentences are all based on actual student writing. Can you find the errors in them? (Some have more than one.)

1. So we have that, \(x = y \).
2. Let \(a \in A \) then for some \(b \in B \) we have \(a < b \).
3. Consider the matrix \(M \), it can be rewritten in the following way.
4. We have \(x \in A \) this implies it is positive.
5. From the hint we know that \(ab = c \), multiplying by \(a^{-1} \) gives \(b = a^{-1}c \).
6. When \(p \) is an prime number, it is 2 or it is odd.
7. Assume that \(p \) is not prime, let \(p = xy \) with \(1 < x \leq y \).
8. Clearing denominators allows you to obtain \(a^2 = bc \).
9. \(f(x) \) is continuous over the interval \([0, 1]\).
10. We also now that \(a \) is even.
11. Let \(x \in S \) then we have \(x > 0 \).
12. There is some \(x \) not in \(S \), else we would have \(x > 0 \).
13. Now assume that \(H \subset G \), then we have that every element of \(H \) is in \(G \).
14. From the last equation, we get \(x = 8 \).
15. Let \(x \in H \), we need to show \(x > 0 \).
16. Let \(\{x_1, x_2, \ldots \} \) be a totally ordered sequence, the following argument shows it has an upper bound.
17. When \(f(x) \) is a polynomial, then it is integrable.
18. We know \((A + B)\) is invertible.
19. It’s not a trivial result since, 0 and 1, the two obvious choices can fail to have the property.
20. To show that \(x = y \). First, suppose \(x > y \).
21. The smallest prime factor of \(n \) is at least 100.
22. We need only two show that \(x \leq 0 \).
23. Assume that \(a = b \), we will get a contradiction.
24. Pick two consecutive Fibonacci numbers, \(F_n \) and \(F_{n+1} \).
25. Let \(p \) be a odd prime number.
26. The Pythagorean theorem says that for some right triangle with sides \(a \), \(b \), and \(c \), \(a^2 + b^2 = c^2 \).
27. Since \(p \) is prime, \((p - 1) > 0 \).
28. Then we can apply the concept \(e^{x+y} = e^x e^y \).
29. We need to find \(a \) and \(b \) to solve our equation.
30. Let \(n = 0 \) then we can suppose \(m > n \).
31. For \(i > 0 a_i = 0 \), which is a contradiction.
32. Consider \(x_n \) we will show that it is positive.
33. The theorem is true for any \(x \) a positive number.
34. When \(x_n > 0 \), \(\forall n \) we can write \(x_n = y_n^2 \).
35. If \(n \) equals to an even number than it can be written as \(2m \) for some integer \(m \).
36. This number is also prime so it is in the set.
37. There are an infinite possible ways that the digits might be wrong.
38. However, I can’t stop the paper yet, there are some drawbacks.
(39) Very little is known about Pythagoras because none of his writings have survived and that it is unknown which work credited to him was actually his work.

(40) An increasing sequence converges if and only it’s bounded above.

(41) Much of work credited to Euclid is probably due to his students.

(42) This method is not very affective.

(43) Although we may think there are examples beyond those in our list, it turns out that there isn’t.

(44) The subtraction of two odd numbers is even.

(45) The Pythagorean theory has many proofs.

(46) Not only has integrals been used to compute areas, but for other applications too.

(47) All off these functions are differentiable.

(48) Lambert proved that π is Irrational.

(49) Lindemann proved π as transcendental.

(50) Now, that we have seen how to derive the formula. Hopefully it is less mysterious.

(51) The fundamental theorem of calculus was invented by Newton and Leibniz.

(52) Lets inscribe a triangle in the circle.

(53) The equation is illustrated on the following picture.

(54) First we establish some notation to make the concept precise.

(55) A consequence of the theorem is that the size of each finite field is a prime power.

(56) We can see that sine the number is positive its a square.

(57) The diagram below can help when we are lacking of explaining the algebra.

(58) Another definition I need to include is an isometry which is a function that doesn’t change distances like a rotation.

(59) Euler’s proof was originally found in Stark’s book in 1970.

(60) There aren’t any simple proofs known of this theorem.