1. Introduction

The converse of Lagrange’s theorem is false: if G is a finite group and $d \mid |G|$, then there may not be a subgroup of G with order d. The simplest example of this is the group A_4, of order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig Sylow [1] discovered that a converse result is true when d is a prime power: if p is a prime number and $p^k \mid |G|$ then G must contain a subgroup of order p^k. Sylow also discovered important relations among the subgroups with order the largest power of p dividing $|G|$, such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order $100 = 2^2 \cdot 5^2$ must contain subgroups of order 1, 2, 4, 5, and 25; the subgroups of order 4 are conjugate to each other, and the subgroups of order 25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2 are conjugate or that the subgroups of order 5 are conjugate.

Definition 1.1. Let G be a finite group and p be a prime. Any subgroup of G whose order is the highest power of p dividing $|G|$ is called a p-Sylow subgroup of G. A p-Sylow subgroup for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order 25, and a p-Sylow subgroup is trivial if $p \neq 2$ or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3, and a p-Sylow subgroup is trivial if $p > 3$. Let’s look at a few examples of Sylow subgroups in groups of order 12.

Example 1.2. In $\mathbb{Z}/(12)$, the only 2-Sylow subgroup is $\{0, 3, 6, 9\} = \langle 3 \rangle$ and the only 3-Sylow subgroup is $\{0, 4, 8\} = \langle 4 \rangle$.

Example 1.3. In A_4 there is one subgroup of order 4, so the only 2-Sylow subgroup is $$\{(1), (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (14)(23) \rangle.$$ There are four 3-Sylow subgroups:

$$\{(1), (123), (132)\} = \langle (123) \rangle, \quad \{(1), (124), (142)\} = \langle (124) \rangle,$$

$$\{(1), (134), (143)\} = \langle (134) \rangle, \quad \{(1), (234), (243)\} = \langle (234) \rangle.$$

Example 1.4. In D_6 there are three 2-Sylow subgroups:

$$\{1, r^3, s, r^3s\} = \langle r^3, s \rangle, \quad \{1, r^3, rs, r^4s\} = \langle r^3, rs \rangle, \quad \{1, r^3, r^2s, r^5s\} = \langle r^3, r^2s \rangle.$$ The only 3-Sylow subgroup of D_6 is $\{1, r^2, r^4\} = \langle r^2 \rangle$.

In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order 3. Let’s look at two examples.

Example 1.5. In S_4, the 3-Sylow subgroups are the 3-Sylow subgroups of A_4 (an element of 3-power order in S_4 must be a 3-cycle, and they all lie in A_4). We determined the 3-Sylow subgroups of A_4 in Example 1.3; there are four of them.
There are three 2-Sylow subgroups of S_4, and they are interesting to work out since they can be understood as copies of D_4 inside S_4. The number of ways to label the four vertices of a square as 1, 2, 3, and 4 is $4! = 24$, but up to rotations and reflections of the square there are really just three different ways of carrying out the labeling, as follows.

Any other labeling of the square is a rotated or reflected version of one of these three squares. For example, the square below is obtained from the middle square above by reflecting across a horizontal line through the middle of the square.

When D_4 acts on a square with labeled vertices, each motion of D_4 creates a permutation of the four vertices, and this permutation is an element of S_4. For example, a 90 degree rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of D_4 inside S_4. The three essentially different labelings of the vertices of the square above embed D_4 into S_4 as three different subgroups of order 8:

\[
\begin{align*}
&\{1, (1234), (1324), (1432), (12)(34), (14)(23), (13), (24)\} = \langle (1234), (13) \rangle, \\
&\{1, (1243), (1342), (12)(34), (13)(24), (14)(23), (14), (23)\} = \langle (1243), (14) \rangle, \\
&\{1, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)\} = \langle (1324), (12) \rangle.
\end{align*}
\]

These are the 2-Sylow subgroups of S_4.

Example 1.6. The group $\text{SL}_2(\mathbb{Z}/(3))$ has order 24. An explicit tabulation of the elements of this group reveals that there are only 8 elements in the group with 2-power order:

\[
\begin{align*}
&\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \\
&\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.
\end{align*}
\]

These form the only 2-Sylow subgroup, which is isomorphic to Q_8 by labeling the matrices in the first row as $1, i, j, k$ and the matrices in the second row as $-1, -i, -j, -k$.

There are four 3-Sylow subgroups: $\langle (\frac{1}{1} \frac{1}{1}) \rangle, \langle (\frac{1}{1} \frac{0}{2}) \rangle, \langle (\frac{0}{2} \frac{1}{1}) \rangle, \text{ and } \langle (\frac{0}{2} \frac{2}{1}) \rangle$.

Here are the Sylow theorems. They are often given in three parts. The result we call Sylow III* is not always stated explicitly as part of the Sylow theorems.
Theorem 1.7 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and any p-subgroup of G lies in a p-Sylow subgroup of G.

Theorem 1.8 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.9 (Sylow III). For each prime p, let n_p be the number of p-Sylow subgroups of G. Write $|G| = p^k m$, where p doesn’t divide m. Then

$$n_p \equiv 1 \mod p \quad \text{and} \quad n_p \mid m.$$

Theorem 1.10 (Sylow III*). For each prime p, let n_p be the number of p-Sylow subgroups of G. Then $n_p = [G : N(P)]$, where P is any p-Sylow subgroup and $N(P)$ is its normalizer.

Sylow II says for two p-Sylow subgroups H and K of G that there is some $g \in G$ such that $gHg^{-1} = K$. This is illustrated in the table below.

<table>
<thead>
<tr>
<th>Example</th>
<th>Group</th>
<th>Size</th>
<th>p</th>
<th>H</th>
<th>K</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>A_4</td>
<td>12</td>
<td>3</td>
<td>(123)</td>
<td>(124)</td>
<td>(243)</td>
</tr>
<tr>
<td>1.4</td>
<td>D_6</td>
<td>12</td>
<td>2</td>
<td>$\langle r^3, s \rangle$</td>
<td>$\langle r^3, rs \rangle$</td>
<td>r^2</td>
</tr>
<tr>
<td>1.5</td>
<td>S_4</td>
<td>24</td>
<td>2</td>
<td>$\langle (1234), (13) \rangle$</td>
<td>$\langle (1243), (14) \rangle$</td>
<td>(34)</td>
</tr>
<tr>
<td>1.6</td>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>3</td>
<td>$\langle \left(\begin{smallmatrix} 1 & 1 \ 0 & 1 \end{smallmatrix}\right) \rangle$</td>
<td>$\langle \left(\begin{smallmatrix} 1 & 0 \ 0 & 1 \end{smallmatrix}\right) \rangle$</td>
<td>$(\frac{0}{2})$</td>
</tr>
</tbody>
</table>

When trying to conjugate one cyclic subgroup to another cyclic subgroup, be careful: not all generators of the two groups have to be conjugate. For example, in A_4 the subgroups $\langle (123) \rangle = \langle (1), (123), (132) \rangle$ and $\langle (124) \rangle = \langle (1), (124), (142) \rangle$ are conjugate, but the conjugacy class of (123) in A_4 is $\{ (123), (142), (134), (243) \}$, so there’s no way to conjugate (123) to (124) by an element of A_4; we must conjugate (123) to (124). The 3-cycles (123) and (124) are conjugate in S_4, but not in A_4. Similarly, $\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \rangle$ and $\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \rangle$ are conjugate in $\text{GL}_2(\mathbb{Z}/(3))$ but not in $\text{SL}_2(\mathbb{Z}/(3))$, so when Sylow II says the subgroups $\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \rangle$ and $\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \rangle$ are conjugate in $\text{SL}_2(\mathbb{Z}/(3))$ a conjugating matrix must send $\left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right)$ to $\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)^2 = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix}\right)$.

Let’s see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups of a group of order 12. For $p = 2$ and $p = 3$ in Sylow III, the divisibility conditions are $n_2 \mid 3$ and $n_3 \mid 4$ and the congruence conditions are $n_2 \equiv 1 \mod 2$ and $n_3 \equiv 1 \mod 3$. The divisibility conditions imply n_2 is 1 or 3 and n_3 is 1, 2, or 4. The congruence $n_2 \equiv 1 \mod 2$ tells us nothing new (1 and 3 are both odd), but the congruence $n_3 \equiv 1 \mod 3$ rules out the option $n_3 = 2$. Therefore n_2 is 1 or 3 and n_3 is 1 or 4 when $|G| = 12$. If $|G| = 24$ we again find n_2 is 1 or 3 while n_3 is 1 or 4. (For instance, from $n_3 \mid 8$ and $n_3 \equiv 1 \mod 3$ the only choices are $n_3 = 1$ and $n_3 = 4$.) Therefore as soon as we find more than one 2-Sylow subgroup there must be three of them, and as soon as we find more than one 3-Sylow subgroup there must be four of them. The table below shows the values of n_2 and n_3 in the examples above.

<table>
<thead>
<tr>
<th>Group</th>
<th>Size</th>
<th>n_2</th>
<th>n_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/(12)$</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>D_6</td>
<td>12</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>S_4</td>
<td>24</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

2. **Proof of the Sylow Theorems**

Our proof of the Sylow theorems will use group actions. The table below is a summary. For each theorem the table lists a group, a set it acts on, and the action. We write $\text{Syl}_p(G)$ for the set of p-Sylow subgroups of G, so $n_p = |\text{Syl}_p(G)|$.

The two conclusions of Sylow III are listed separately in the table since they are proved using different group actions.

Our proofs will usually involve the action of a \(p \)-group on a set and use the fixed-point congruence for such actions: \(|X| \equiv |\text{Fix}_G(X)| \text{ mod } p\), where \(X \) is a finite set being acted on by a finite \(p \)-group \(G \).

Proof of Sylow I: Let \(p^k \) be the highest power of \(p \) in \(|G|\). The result is obvious if \(k = 0 \), since the trivial subgroup is a \(p \)-Sylow subgroup, so we can take \(k \geq 1 \), hence \(p \) divides \(|G|\).

Our strategy for proving Sylow I is to prove a stronger result: there is a subgroup of order \(p^i \) for \(0 \leq i \leq k \). More specifically, if \(|H| = p^i \) and \(i < k \), we will show there is a \(p \)-subgroup \(H' \supset H \) with \(|H' : H| = p\), so \(|H'| = p^{i+1}\). Then, starting with \(H \) as the trivial subgroup, we can repeat this process with \(H' \) in place of \(H \) to create a rising tower of subgroups

\[
\{e\} = H_0 \subset H_1 \subset H_2 \subset \cdots
\]

where \(|H_i| = p^i\), and after \(k \) steps we reach \(H_k \), which is a \(p \)-Sylow subgroup of \(G \).

Consider the left multiplication action of \(H \) on the left cosets \(G/H \) (this need not be a group). This is an action of a finite \(p \)-group \(H \) on the set \(G/H \), so by the fixed-point congruence for actions of nontrivial \(p \)-groups,

\[
|G/H| \equiv |\text{Fix}_H(G/H)| \text{ mod } p.
\]

(2.1)

Let’s unravel what it means for a coset \(gH \) in \(G/H \) to be a fixed point by the group \(H \) under left multiplication:

\[
hgH = gH \text{ for all } h \in H \iff hg \in gH \text{ for all } h \in H
\]

\[
\iff g^{-1}hg \in H \text{ for all } h \in H
\]

\[
\iff g^{-1}Hg \subset H
\]

\[
\iff g^{-1}Hg = H \text{ because } |g^{-1}Hg| = |H|
\]

\[
\iff g \in N(H).
\]

Thus \(\text{Fix}_H(G/H) = \{gH : g \in N(H)\} = N(H)/H \), so (2.1) becomes

\[
|G : H| \equiv |N(H) : H| \text{ mod } p.
\]

(2.2)

Because \(H < N(H) \), \(N(H)/H \) is a group.

When \(|H| = p^i\) and \(i < k \), the index \(|G : H|\) is divisible by \(p \), so the congruence (2.2) implies \(|N(H) : H|\) is divisible by \(p \), so \(N(H)/H \) is a group with order divisible by \(p \). Thus \(N(H)/H \) has a subgroup of order \(p \) by Cauchy’s theorem. All subgroups of the quotient group \(N(H)/H \) have the form \(H'/H \), where \(H' \) is a subgroup between \(H \) and \(N(H) \). Therefore a subgroup of order \(p \) in \(N(H)/H \) is \(H'/H \) such that \(|H' : H| = p\), so \(|H'| = p|H| = p^{i+1}\).

Proof of Sylow II: Pick two \(p \)-Sylow subgroups \(P \) and \(Q \). We want to show they are conjugate.
Consider the action of Q on G/P by left multiplication. Since Q is a finite p-group,
\[|G/P| \equiv |\text{Fix}_Q(G/P)| \mod p. \]

The left side is $[G : P]$, which is nonzero modulo p since P is a p-Sylow subgroup. Thus $|\text{Fix}_Q(G/P)|$ can’t be 0, so there is a fixed point in G/P. Call it gP. That is, $qgP = gP$ for all $q \in Q$. Equivalently, $qg \in gP$ for all $q \in Q$, so $Q \subset gPg^{-1}$. Therefore $Q = gPg^{-1}$, since Q and gPg^{-1} have the same size.

Proof of Sylow III: We will prove $n_p \equiv 1 \mod p$ and then $n_p \mid m$.

To show $n_p \equiv 1 \mod p$, consider the action of P on the set $\text{Syl}_p(G)$ by conjugation. The size of $\text{Syl}_p(G)$ is n_p. Since P is a finite p-group,
\[n_p \equiv |\text{fixed points}| \mod p. \]

Fixed points for P acting by conjugation on $\text{Syl}_p(G)$ are $Q \in \text{Syl}_p(G)$ such that $gQg^{-1} = Q$ for all $g \in P$. One choice for Q is P. For any such Q, $P \subset N(Q)$. Also $Q \subset N(Q)$, so P and Q are p-Sylow subgroups in $N(Q)$. Applying Sylow II to the group $N(Q)$, P and Q are conjugate in $N(Q)$. Since $Q \subset N(Q)$, the only subgroup of $N(Q)$ conjugate to Q is Q, so $P = Q$. Thus P is the only fixed point when P acts on $\text{Syl}_p(G)$, so $n_p \equiv 1 \mod p$.

To show $n_p \mid m$, consider the action of G by conjugation on $\text{Syl}_p(G)$. Since the p-Sylow subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group acts with one orbit has size dividing the size of the group, so $n_p \mid |G|$. From $n_p \equiv 1 \mod p$, the number n_p is relatively prime to p, so $n_p \mid m$.

Proof of Sylow III: Let P be a p-Sylow subgroup of G and let G act on $\text{Syl}_p(G)$ by conjugation. By the orbit-stabilizer formula,
\[n_p = |\text{Syl}_p(G)| = [G : \text{Stab}_P]. \]

The stabilizer Stab_P is
\[\text{Stab}_P = \{g : gPg^{-1} = P\} = N(P). \]

Thus $n_p = [G : N(P)]$.

3. **Historical Remarks**

Sylow’s proof of his theorems appeared in [1]. Here is what he showed (of course, without using the label “Sylow subgroup”).

1) There exist p-Sylow subgroups. Moreover, $[G : N(P)] \equiv 1 \mod p$ for any p-Sylow subgroup P.

2) Let P be a p-Sylow subgroup. The number of p-Sylow subgroups is $[G : N(P)]$. All p-Sylow subgroups are conjugate.

3) Any finite p-group G with size p^k contains an increasing chain of subgroups
\[\{e\} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_k \subset G, \]

where each subgroup has index p in the next one. In particular, $|G_i| = p^i$ for all i.

Here is how Sylow phrased his first theorem (the first item on the above list):\(^1\)

\(^1\)We modify some of his notation: he wrote the subgroup as g, not H, and the prime as n, not p.
Si p^α désigne la plus grande puissance du nombre premier p qui divise l’ordre du groupe G, ce groupe contient un autre H de l’ordre p^α; si de plus $p^\alpha \nu$ désigne l’ordre du plus grand groupe contenu dans G dont les substitutions sont permutables à H, l’ordre de G sera de la forme $p^\alpha \nu(pm + 1)$.

In English, using current terminology, this says

If p^α is the largest power of the prime p which divides the size of the group G, this group contains a subgroup H of order p^α; if moreover $p^\alpha \nu$ is the size of the largest subgroup of G that normalizes H, the size of G is of the form $p^\alpha \nu(pm + 1)$.

Sylow did not have the abstract concept of a group: all groups for him arose as subgroups of symmetric groups, so groups were always “groupes de substitutions.” The condition that an element $x \in G$ is “permutable” with a subgroup H means $xH = Hx$, or in other words $x \in N(H)$. The end of the first part of his theorem says the normalizer of a Sylow subgroup has index $pm + 1$ for some m, which means the index is $\equiv 1 \mod p$.

4. Analogues of the Sylow Theorems

There are analogues of the Sylow theorems for other types of subgroups.

(1) A Hall subgroup of a finite group G is a subgroup H whose order and index are relatively prime. For example, in a group of order 60 any subgroup of order 12 has index 5 and thus is a Hall subgroup. A p-subgroup is a Hall subgroup if and only if it is a Sylow subgroup. In 1928 Philip Hall proved in every solvable group of order n that there is a Hall subgroup of each order d dividing n where $(d, n/d) = 1$ and any two Hall subgroups with the same order are conjugate. Conversely, Hall proved that a finite group of order n containing a Hall subgroup of order d for each d dividing n such that $(d, n/d) = 1$ has to be a solvable group.

(2) In a compact connected Lie group, the maximal tori (maximal connected abelian subgroups) satisfy properties analogous to Sylow subgroups: they exist, every torus is contained in a maximal torus, and all maximal tori are conjugate. Of course, unlike Sylow subgroups, maximal tori are always abelian.

(3) In a connected linear algebraic group, the maximal unipotent subgroups are like Sylow subgroups: they exist, every unipotent subgroup is contained in a maximal unipotent subgroup, and all maximal unipotent subgroups are conjugate. The normalizer of a maximal unipotent subgroup is called a Borel subgroup, and like the normalizers of Sylow subgroups all Borel subgroups equal their own normalizer. For the group $GL_n(\mathbb{Z}/(p))$, its subgroup of upper triangular matrices with 1’s along the main diagonal

$$
\begin{pmatrix}
1 & * & \cdots & * \\
0 & 1 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

is both a p-Sylow subgroup and a maximal unipotent subgroup.

References